\(\int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx\) [545]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 140 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d} \] Output:

2*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*se 
c(d*x+c)^(1/2)/a^(1/2)/d+2^(1/2)*(A-B)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2 
)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^( 
1/2)/a^(1/2)/d
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.82 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (-2 B \arcsin \left (\sqrt {\sec (c+d x)}\right )+\sqrt {2} (-A+B) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )\right ) \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x] 
]),x]
 

Output:

((-2*B*ArcSin[Sqrt[Sec[c + d*x]]] + Sqrt[2]*(-A + B)*ArcTan[(Sqrt[2]*Sqrt[ 
Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]])*Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3 
/2)*Sin[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.86, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3042, 3434, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left ((A-B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx+\frac {B \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left ((A-B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {B \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left ((A-B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 B \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{a d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left ((A-B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {2 B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 (A-B) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}\right )\)

Input:

Int[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]),x]
 

Output:

((2*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d 
) + (Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sq 
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d))*Sqrt[Cos[c + d*x]]*Sqrt[Sec 
[c + d*x]]
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 2.02 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.46

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}\, \left (A \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-B \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+B \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+B \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right )}{d \left (1+\cos \left (d x +c \right )\right ) a \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(204\)

Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/d*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(A*2^(1/2)*arctan(1/2*2^(1/2 
)*(-csc(d*x+c)+cot(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))-B*2^(1/2)*arctan(1/2 
*2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+B*arctan(1/2* 
(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2))+B*arctan(1/2*(cot(d*x 
+c)-csc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2)))/(1+cos(d*x+c))/a/(-1/(1+cos( 
d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.61 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\sqrt {2} {\left (A - B\right )} \sqrt {a} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - B \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, a d}, -\frac {\sqrt {2} {\left (A - B\right )} a \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right ) + 1\right )}}\right ) - B \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{a d}\right ] \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

[-1/2*(sqrt(2)*(A - B)*sqrt(a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt((a*co 
s(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2* 
cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - B*sqrt(a)*log(( 
a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos( 
d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/ 
(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a*d), -(sqrt(2)*(A - B)*a*sqrt(-1/a)* 
arctan(1/2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt 
(cos(d*x + c))*sin(d*x + c)/(cos(d*x + c) + 1)) - B*sqrt(-a)*arctan(2*sqrt 
(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + 
c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d)]
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))/(sqrt(a*(sec(c + d*x) + 1))*sqrt(cos(c + d*x 
))), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 699 vs. \(2 (115) = 230\).

Time = 0.27 (sec) , antiderivative size = 699, normalized size of antiderivative = 4.99 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

1/2*((sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin( 
1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 
 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*A/sqrt(a) - (sqrt(2)*log(cos(1/3* 
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2* 
d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - sqrt(2)*log(cos(1/3*arctan2(si 
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x 
 + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2* 
c), cos(3/2*d*x + 3/2*c))) + 1) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2* 
c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), co 
s(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d* 
x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d 
*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d* 
x + 3/2*c))) + 2) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d* 
x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2 
*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/ 
2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + ...
 

Giac [A] (verification not implemented)

Time = 169.40 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.39 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A \sqrt {a} - B \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {2 \, B \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {2 \, B \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{2 \, d} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

-1/2*(sqrt(2)*(A*sqrt(a) - B*sqrt(a))*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - 
sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(a*sgn(cos(d*x + c))) - 2*B*log(abs 
((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a 
*(2*sqrt(2) + 3)))/(sqrt(a)*sgn(cos(d*x + c))) + 2*B*log(abs((sqrt(a)*tan( 
1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 
3)))/(sqrt(a)*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(1/2)),x 
)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) a \right )}{a} \] Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x))/(co 
s(c + d*x)*sec(c + d*x) + cos(c + d*x)),x)*b + int((sqrt(sec(c + d*x) + 1) 
*sqrt(cos(c + d*x)))/(cos(c + d*x)*sec(c + d*x) + cos(c + d*x)),x)*a))/a