\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [550]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 176 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(7 A-3 B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \] Output:

-1/4*(7*A-3*B)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+ 
a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/a^(3/2)/d-1 
/2*(A-B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2)+1/2*(5*A-B)* 
sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 1.23 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.10 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {2} (7 A-3 B) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) (B+A \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+2 \left (2 A^2+5 A B-B^2+A (5 A+3 B) \cos (c+d x)+2 A^2 \cos (2 (c+d x))\right ) \sqrt {1-\sec (c+d x)} \tan (c+d x)}{4 d \sqrt {-1+\cos (c+d x)} (B+A \cos (c+d x)) (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^( 
3/2),x]
 

Output:

(2*Sqrt[2]*(7*A - 3*B)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c 
+ d*x]]]*Cos[(c + d*x)/2]^2*(B + A*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sin[c 
+ d*x] + 2*(2*A^2 + 5*A*B - B^2 + A*(5*A + 3*B)*Cos[c + d*x] + 2*A^2*Cos[2 
*(c + d*x)])*Sqrt[1 - Sec[c + d*x]]*Tan[c + d*x])/(4*d*Sqrt[-1 + Cos[c + d 
*x]]*(B + A*Cos[c + d*x])*(a*(1 + Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3434, 3042, 4508, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B)-2 a (A-B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B)-2 a (A-B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B)-2 a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-3 B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-3 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (7 A-3 B) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a (5 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} \sqrt {a} (7 A-3 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*((A - B)*Sqrt[Sec[c + d*x]]*Si 
n[c + d*x])/(d*(a + a*Sec[c + d*x])^(3/2)) + (-((Sqrt[2]*Sqrt[a]*(7*A - 3* 
B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*S 
ec[c + d*x]])])/d) + (2*a*(5*A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sq 
rt[a + a*Sec[c + d*x]]))/(4*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [A] (verified)

Time = 1.60 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.39

method result size
default \(\frac {\left (\frac {B \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \left (\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-3 \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right ) \sqrt {2}}{8 \sqrt {\cos \left (d x +c \right )}\, \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}-\frac {A \sqrt {\cos \left (d x +c \right )}\, \left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-7 \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-9 \csc \left (d x +c \right )+9 \cot \left (d x +c \right )\right )}{4}\right ) \sqrt {-a \left (-1-\sec \left (d x +c \right )\right )}}{d \,a^{2}}\) \(244\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/d*(1/8*B*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*((-2/(1+cos(d*x+c)))^(1/2)*(c 
sc(d*x+c)-cot(d*x+c))-3*arctan(1/2*2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(-1/(1 
+cos(d*x+c)))^(1/2)))/cos(d*x+c)^(1/2)*2^(1/2)/(-1/(1+cos(d*x+c)))^(1/2)-1 
/4*A*cos(d*x+c)^(1/2)*(-(1-cos(d*x+c))^3*csc(d*x+c)^3-7*arctan(1/2*2^(1/2) 
*(-csc(d*x+c)+cot(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^( 
1/2)-9*csc(d*x+c)+9*cot(d*x+c)))/a^2*(-a*(-1-sec(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.38 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right ) + 7 \, A - 3 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (4 \, A \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right ) + 7 \, A - 3 \, B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right ) + a\right )}}\right ) + 2 \, {\left (4 \, A \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="fricas")
 

Output:

[-1/8*(sqrt(2)*((7*A - 3*B)*cos(d*x + c)^2 + 2*(7*A - 3*B)*cos(d*x + c) + 
7*A - 3*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x 
+ c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(4*A*cos(d*x + c) + 
 5*A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(sqrt( 
2)*((7*A - 3*B)*cos(d*x + c)^2 + 2*(7*A - 3*B)*cos(d*x + c) + 7*A - 3*B)*s 
qrt(-a)*arctan(1/2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c) + a)) + 2*(4*A*cos(d*x + 
 c) + 5*A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))* 
sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sqrt(cos(c + d*x))/(a*(sec(c + d*x) + 1))**( 
3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8208 vs. \(2 (147) = 294\).

Time = 0.31 (sec) , antiderivative size = 8208, normalized size of antiderivative = 46.64 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="maxima")
 

Output:

-1/4*((4*(7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/ 
2*d*x + 1/2*c) + 1) - 7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^ 
2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sin(1/2*d*x + 1/2*c))*cos(3/2*d*x + 3/ 
2*c)^4 + 63*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(1/2*d*x + 1/2*c)^4 + 4*(7*log(cos(1/2* 
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 7* 
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2* 
c) + 1) - 8*sin(1/2*d*x + 1/2*c))*sin(3/2*d*x + 3/2*c)^4 + 70*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c)^2*sin(1/2*d*x + 1/2*c)^2 + 7*(log(cos(1/2*d*x 
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(c 
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 
1))*sin(1/2*d*x + 1/2*c)^4 - 8*sin(1/2*d*x + 1/2*c)^5 + 28*(7*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c) - 8*cos(1/2*d*x + 1/2*c)*sin(1/2*d*x + 1/2*c) 
)*cos(3/2*d*x + 3/2*c)^3 + 4*(21*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 ...
 

Giac [A] (verification not implemented)

Time = 166.95 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {{\left (\frac {\sqrt {2} {\left (A a^{2} - B a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (9 \, A a^{2} - B a^{2}\right )}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} + \frac {\sqrt {2} {\left (7 \, A - 3 \, B\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="giac")
 

Output:

1/4*((sqrt(2)*(A*a^2 - B*a^2)*tan(1/2*d*x + 1/2*c)^2/(a^3*sgn(cos(d*x + c) 
)) + sqrt(2)*(9*A*a^2 - B*a^2)/(a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2* 
c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(2)*(7*A - 3*B)*log(abs(-sqrt( 
a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/(a^(3/2)*sg 
n(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(3/2),x 
)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x))/(se 
c(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x) + 1)*sqr 
t(cos(c + d*x)))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*a))/a**2