\(\int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [566]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 103 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 (A b+a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*(A*b+B*a)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(3*A*a+B*b)*Inver 
seJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/3*b*B*sin(d*x+c)/d/cos(d*x+c)^(3/2)+ 
2*(A*b+B*a)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.04 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \left (-3 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(3 a A+b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+3 A b \sin (c+d x)+3 a B \sin (c+d x)+b B \tan (c+d x)\right )}{3 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x 
]
 

Output:

(2*(-3*(A*b + a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (3*a*A + 
 b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 3*A*b*Sin[c + d*x] + 
3*a*B*Sin[c + d*x] + b*B*Tan[c + d*x]))/(3*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3433, 3042, 3447, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {(a \cos (c+d x)+b) (A \cos (c+d x)+B)}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+b\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {(a B+A b) \cos (c+d x)+a A \cos ^2(c+d x)+b B}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a B+A b) \sin \left (c+d x+\frac {\pi }{2}\right )+a A \sin \left (c+d x+\frac {\pi }{2}\right )^2+b B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {2}{3} \int \frac {3 (A b+a B)+(3 a A+b B) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 (A b+a B)+(3 a A+b B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 (A b+a B)+(3 a A+b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (3 (a B+A b) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+(3 a A+b B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 (a B+A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+(3 a A+b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{3} \left ((3 a A+b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a B+A b) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((3 a A+b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a B+A b) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left ((3 a A+b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a B+A b) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+3 (a B+A b) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]
 

Output:

(2*b*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((2*(3*a*A + b*B)*Elliptic 
F[(c + d*x)/2, 2])/d + 3*(A*b + a*B)*((-2*EllipticE[(c + d*x)/2, 2])/d + ( 
2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(98)=196\).

Time = 4.27 (sec) , antiderivative size = 401, normalized size of antiderivative = 3.89

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 \left (A b +B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+2 B b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(401\)

Input:

int((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVER 
BOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*a*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
(A*b+B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2 
*c)^2-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+2*B*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/ 
3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2 
^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 213, normalized size of antiderivative = 2.07 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {2} {\left (-3 i \, A a - i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, A a + i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a + i \, A b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a - i \, A b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (B b + 3 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"fricas")
 

Output:

1/3*(sqrt(2)*(-3*I*A*a - I*B*b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(3*I*A*a + I*B*b)*cos(d*x + c)^2* 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I*B 
*a + I*A*b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-I*B*a - I*A*b)*cos(d*x + 
c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c))) + 2*(B*b + 3*(B*a + A*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin 
(d*x + c))/(d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm= 
"giac")
 

Output:

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 12.95 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.46 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,A\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x)))/cos(c + d*x)^(1/2),x)
 

Output:

(2*A*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*b*sin(c + d*x)*hypergeom([-1/ 
4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2 
)) + (2*B*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*c 
os(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*b*sin(c + d*x)*hypergeom( 
[-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2 
)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a^{2}+\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )}d x \right ) b^{2}+2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )}d x \right ) a b \] Input:

int((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a**2 + int((sqrt(cos(c + d*x))*sec( 
c + d*x)**2)/cos(c + d*x),x)*b**2 + 2*int((sqrt(cos(c + d*x))*sec(c + d*x) 
)/cos(c + d*x),x)*a*b