\(\int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx\) [63]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 163 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {a^3 (15 A+13 B) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {a^3 (15 A+13 B) \tan (c+d x)}{5 d}+\frac {3 a^3 (15 A+13 B) \sec (c+d x) \tan (c+d x)}{40 d}+\frac {(5 A-B) (a+a \sec (c+d x))^3 \tan (c+d x)}{20 d}+\frac {B (a+a \sec (c+d x))^4 \tan (c+d x)}{5 a d}+\frac {a^3 (15 A+13 B) \tan ^3(c+d x)}{60 d} \] Output:

1/8*a^3*(15*A+13*B)*arctanh(sin(d*x+c))/d+1/5*a^3*(15*A+13*B)*tan(d*x+c)/d 
+3/40*a^3*(15*A+13*B)*sec(d*x+c)*tan(d*x+c)/d+1/20*(5*A-B)*(a+a*sec(d*x+c) 
)^3*tan(d*x+c)/d+1/5*B*(a+a*sec(d*x+c))^4*tan(d*x+c)/a/d+1/60*a^3*(15*A+13 
*B)*tan(d*x+c)^3/d
 

Mathematica [A] (verified)

Time = 1.97 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.63 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {a^3 \left (15 (15 A+13 B) \text {arctanh}(\sin (c+d x))+\left (8 (45 A+38 B)+15 (15 A+13 B) \sec (c+d x)+8 (15 A+19 B) \sec ^2(c+d x)+30 (A+3 B) \sec ^3(c+d x)+24 B \sec ^4(c+d x)\right ) \tan (c+d x)\right )}{120 d} \] Input:

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x]),x]
 

Output:

(a^3*(15*(15*A + 13*B)*ArcTanh[Sin[c + d*x]] + (8*(45*A + 38*B) + 15*(15*A 
 + 13*B)*Sec[c + d*x] + 8*(15*A + 19*B)*Sec[c + d*x]^2 + 30*(A + 3*B)*Sec[ 
c + d*x]^3 + 24*B*Sec[c + d*x]^4)*Tan[c + d*x]))/(120*d)
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3042, 4498, 3042, 4489, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a \sec (c+d x)+a)^3 (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\int \sec (c+d x) (\sec (c+d x) a+a)^3 (4 a B+a (5 A-B) \sec (c+d x))dx}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (4 a B+a (5 A-B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {1}{4} a (15 A+13 B) \int \sec (c+d x) (\sec (c+d x) a+a)^3dx+\frac {a (5 A-B) \tan (c+d x) (a \sec (c+d x)+a)^3}{4 d}}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} a (15 A+13 B) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3dx+\frac {a (5 A-B) \tan (c+d x) (a \sec (c+d x)+a)^3}{4 d}}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

\(\Big \downarrow \) 4278

\(\displaystyle \frac {\frac {1}{4} a (15 A+13 B) \int \left (a^3 \sec ^4(c+d x)+3 a^3 \sec ^3(c+d x)+3 a^3 \sec ^2(c+d x)+a^3 \sec (c+d x)\right )dx+\frac {a (5 A-B) \tan (c+d x) (a \sec (c+d x)+a)^3}{4 d}}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {1}{4} a (15 A+13 B) \left (\frac {5 a^3 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d}+\frac {4 a^3 \tan (c+d x)}{d}+\frac {3 a^3 \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {a (5 A-B) \tan (c+d x) (a \sec (c+d x)+a)^3}{4 d}}{5 a}+\frac {B \tan (c+d x) (a \sec (c+d x)+a)^4}{5 a d}\)

Input:

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x]),x]
 

Output:

(B*(a + a*Sec[c + d*x])^4*Tan[c + d*x])/(5*a*d) + ((a*(5*A - B)*(a + a*Sec 
[c + d*x])^3*Tan[c + d*x])/(4*d) + (a*(15*A + 13*B)*((5*a^3*ArcTanh[Sin[c 
+ d*x]])/(2*d) + (4*a^3*Tan[c + d*x])/d + (3*a^3*Sec[c + d*x]*Tan[c + d*x] 
)/(2*d) + (a^3*Tan[c + d*x]^3)/(3*d)))/4)/(5*a)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 1.15 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.20

method result size
parts \(\frac {\left (a^{3} A +3 B \,a^{3}\right ) \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {\left (3 a^{3} A +B \,a^{3}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {\left (3 a^{3} A +3 B \,a^{3}\right ) \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}-\frac {B \,a^{3} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}+\frac {a^{3} A \tan \left (d x +c \right )}{d}\) \(196\)
norman \(\frac {-\frac {32 a^{3} \left (15 A +13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{15 d}+\frac {7 a^{3} \left (15 A +13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 d}-\frac {a^{3} \left (15 A +13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{4 d}-\frac {a^{3} \left (49 A +51 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {a^{3} \left (183 A +133 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{5}}-\frac {a^{3} \left (15 A +13 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {a^{3} \left (15 A +13 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(201\)
parallelrisch \(\frac {10 a^{3} \left (-\frac {15 \left (\cos \left (d x +c \right )+\frac {\cos \left (3 d x +3 c \right )}{2}+\frac {\cos \left (5 d x +5 c \right )}{10}\right ) \left (A +\frac {13 B}{15}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8}+\frac {15 \left (\cos \left (d x +c \right )+\frac {\cos \left (3 d x +3 c \right )}{2}+\frac {\cos \left (5 d x +5 c \right )}{10}\right ) \left (A +\frac {13 B}{15}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8}+\left (\frac {19 A}{20}+\frac {5 B}{4}\right ) \sin \left (2 d x +2 c \right )+\left (\frac {13 A}{10}+\frac {19 B}{15}\right ) \sin \left (3 d x +3 c \right )+\left (\frac {3 A}{8}+\frac {13 B}{40}\right ) \sin \left (4 d x +4 c \right )+\left (\frac {3 A}{10}+\frac {19 B}{75}\right ) \sin \left (5 d x +5 c \right )+\sin \left (d x +c \right ) \left (A +\frac {4 B}{3}\right )\right )}{d \left (10 \cos \left (d x +c \right )+5 \cos \left (3 d x +3 c \right )+\cos \left (5 d x +5 c \right )\right )}\) \(217\)
derivativedivides \(\frac {a^{3} A \tan \left (d x +c \right )+B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-3 B \,a^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-3 a^{3} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{3} A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \,a^{3} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}\) \(271\)
default \(\frac {a^{3} A \tan \left (d x +c \right )+B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-3 B \,a^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-3 a^{3} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{3} A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \,a^{3} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}\) \(271\)
risch \(-\frac {i a^{3} \left (225 A \,{\mathrm e}^{9 i \left (d x +c \right )}+195 B \,{\mathrm e}^{9 i \left (d x +c \right )}-120 A \,{\mathrm e}^{8 i \left (d x +c \right )}+570 A \,{\mathrm e}^{7 i \left (d x +c \right )}+750 B \,{\mathrm e}^{7 i \left (d x +c \right )}-1200 A \,{\mathrm e}^{6 i \left (d x +c \right )}-720 B \,{\mathrm e}^{6 i \left (d x +c \right )}-2400 A \,{\mathrm e}^{4 i \left (d x +c \right )}-2320 B \,{\mathrm e}^{4 i \left (d x +c \right )}-570 A \,{\mathrm e}^{3 i \left (d x +c \right )}-750 B \,{\mathrm e}^{3 i \left (d x +c \right )}-1680 A \,{\mathrm e}^{2 i \left (d x +c \right )}-1520 B \,{\mathrm e}^{2 i \left (d x +c \right )}-225 \,{\mathrm e}^{i \left (d x +c \right )} A -195 B \,{\mathrm e}^{i \left (d x +c \right )}-360 A -304 B \right )}{60 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{5}}-\frac {15 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{8 d}-\frac {13 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{8 d}+\frac {15 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{8 d}+\frac {13 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{8 d}\) \(299\)

Input:

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)),x,method=_RETURNVERBO 
SE)
 

Output:

(A*a^3+3*B*a^3)/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(s 
ec(d*x+c)+tan(d*x+c)))+(3*A*a^3+B*a^3)/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln 
(sec(d*x+c)+tan(d*x+c)))-(3*A*a^3+3*B*a^3)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d 
*x+c)-B*a^3/d*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c)+a^3*A/ 
d*tan(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.01 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {15 \, {\left (15 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (15 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (45 \, A + 38 \, B\right )} a^{3} \cos \left (d x + c\right )^{4} + 15 \, {\left (15 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{3} + 8 \, {\left (15 \, A + 19 \, B\right )} a^{3} \cos \left (d x + c\right )^{2} + 30 \, {\left (A + 3 \, B\right )} a^{3} \cos \left (d x + c\right ) + 24 \, B a^{3}\right )} \sin \left (d x + c\right )}{240 \, d \cos \left (d x + c\right )^{5}} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="f 
ricas")
 

Output:

1/240*(15*(15*A + 13*B)*a^3*cos(d*x + c)^5*log(sin(d*x + c) + 1) - 15*(15* 
A + 13*B)*a^3*cos(d*x + c)^5*log(-sin(d*x + c) + 1) + 2*(8*(45*A + 38*B)*a 
^3*cos(d*x + c)^4 + 15*(15*A + 13*B)*a^3*cos(d*x + c)^3 + 8*(15*A + 19*B)* 
a^3*cos(d*x + c)^2 + 30*(A + 3*B)*a^3*cos(d*x + c) + 24*B*a^3)*sin(d*x + c 
))/(d*cos(d*x + c)^5)
 

Sympy [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=a^{3} \left (\int A \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 A \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 A \sec ^{4}{\left (c + d x \right )}\, dx + \int A \sec ^{5}{\left (c + d x \right )}\, dx + \int B \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 B \sec ^{4}{\left (c + d x \right )}\, dx + \int 3 B \sec ^{5}{\left (c + d x \right )}\, dx + \int B \sec ^{6}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**3*(A+B*sec(d*x+c)),x)
 

Output:

a**3*(Integral(A*sec(c + d*x)**2, x) + Integral(3*A*sec(c + d*x)**3, x) + 
Integral(3*A*sec(c + d*x)**4, x) + Integral(A*sec(c + d*x)**5, x) + Integr 
al(B*sec(c + d*x)**3, x) + Integral(3*B*sec(c + d*x)**4, x) + Integral(3*B 
*sec(c + d*x)**5, x) + Integral(B*sec(c + d*x)**6, x))
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 337 vs. \(2 (151) = 302\).

Time = 0.04 (sec) , antiderivative size = 337, normalized size of antiderivative = 2.07 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{3} + 16 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} B a^{3} + 240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{3} - 15 \, A a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 45 \, B a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 180 \, A a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 60 \, B a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 240 \, A a^{3} \tan \left (d x + c\right )}{240 \, d} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="m 
axima")
 

Output:

1/240*(240*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^3 + 16*(3*tan(d*x + c)^5 
+ 10*tan(d*x + c)^3 + 15*tan(d*x + c))*B*a^3 + 240*(tan(d*x + c)^3 + 3*tan 
(d*x + c))*B*a^3 - 15*A*a^3*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d* 
x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x 
 + c) - 1)) - 45*B*a^3*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c 
)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) 
 - 1)) - 180*A*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) 
 + 1) + log(sin(d*x + c) - 1)) - 60*B*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 
- 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 240*A*a^3*tan(d*x 
+ c))/d
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.51 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {15 \, {\left (15 \, A a^{3} + 13 \, B a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, {\left (15 \, A a^{3} + 13 \, B a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (225 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 195 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 1050 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 910 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 1920 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 1664 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 1830 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1330 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 735 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 765 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{5}}}{120 \, d} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="g 
iac")
 

Output:

1/120*(15*(15*A*a^3 + 13*B*a^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 15*(1 
5*A*a^3 + 13*B*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(225*A*a^3*tan( 
1/2*d*x + 1/2*c)^9 + 195*B*a^3*tan(1/2*d*x + 1/2*c)^9 - 1050*A*a^3*tan(1/2 
*d*x + 1/2*c)^7 - 910*B*a^3*tan(1/2*d*x + 1/2*c)^7 + 1920*A*a^3*tan(1/2*d* 
x + 1/2*c)^5 + 1664*B*a^3*tan(1/2*d*x + 1/2*c)^5 - 1830*A*a^3*tan(1/2*d*x 
+ 1/2*c)^3 - 1330*B*a^3*tan(1/2*d*x + 1/2*c)^3 + 735*A*a^3*tan(1/2*d*x + 1 
/2*c) + 765*B*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^5)/d
 

Mupad [B] (verification not implemented)

Time = 13.54 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.37 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx=\frac {a^3\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (15\,A+13\,B\right )}{4\,d}-\frac {\left (\frac {15\,A\,a^3}{4}+\frac {13\,B\,a^3}{4}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (-\frac {35\,A\,a^3}{2}-\frac {91\,B\,a^3}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (32\,A\,a^3+\frac {416\,B\,a^3}{15}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {61\,A\,a^3}{2}-\frac {133\,B\,a^3}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {49\,A\,a^3}{4}+\frac {51\,B\,a^3}{4}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^3)/cos(c + d*x)^2,x)
 

Output:

(a^3*atanh(tan(c/2 + (d*x)/2))*(15*A + 13*B))/(4*d) - (tan(c/2 + (d*x)/2)* 
((49*A*a^3)/4 + (51*B*a^3)/4) + tan(c/2 + (d*x)/2)^9*((15*A*a^3)/4 + (13*B 
*a^3)/4) - tan(c/2 + (d*x)/2)^7*((35*A*a^3)/2 + (91*B*a^3)/6) - tan(c/2 + 
(d*x)/2)^3*((61*A*a^3)/2 + (133*B*a^3)/6) + tan(c/2 + (d*x)/2)^5*(32*A*a^3 
 + (416*B*a^3)/15))/(d*(5*tan(c/2 + (d*x)/2)^2 - 10*tan(c/2 + (d*x)/2)^4 + 
 10*tan(c/2 + (d*x)/2)^6 - 5*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 
- 1))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.95 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)),x)
 

Output:

(a**3*( - 225*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a - 1 
95*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*b + 450*cos(c + 
d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a + 390*cos(c + d*x)*log(ta 
n((c + d*x)/2) - 1)*sin(c + d*x)**2*b - 225*cos(c + d*x)*log(tan((c + d*x) 
/2) - 1)*a - 195*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*b + 225*cos(c + d* 
x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**4*a + 195*cos(c + d*x)*log(tan( 
(c + d*x)/2) + 1)*sin(c + d*x)**4*b - 450*cos(c + d*x)*log(tan((c + d*x)/2 
) + 1)*sin(c + d*x)**2*a - 390*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin( 
c + d*x)**2*b + 225*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a + 195*cos(c + 
 d*x)*log(tan((c + d*x)/2) + 1)*b - 225*cos(c + d*x)*sin(c + d*x)**3*a - 1 
95*cos(c + d*x)*sin(c + d*x)**3*b + 255*cos(c + d*x)*sin(c + d*x)*a + 285* 
cos(c + d*x)*sin(c + d*x)*b + 360*sin(c + d*x)**5*a + 304*sin(c + d*x)**5* 
b - 840*sin(c + d*x)**3*a - 760*sin(c + d*x)**3*b + 480*sin(c + d*x)*a + 4 
80*sin(c + d*x)*b))/(120*cos(c + d*x)*d*(sin(c + d*x)**4 - 2*sin(c + d*x)* 
*2 + 1))