\(\int \sec ^3(c+d x) (A+C \sec ^2(c+d x)) \, dx\) [4]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 70 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {(4 A+3 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {(4 A+3 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {C \sec ^3(c+d x) \tan (c+d x)}{4 d} \] Output:

1/8*(4*A+3*C)*arctanh(sin(d*x+c))/d+1/8*(4*A+3*C)*sec(d*x+c)*tan(d*x+c)/d+ 
1/4*C*sec(d*x+c)^3*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.33 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {A \text {arctanh}(\sin (c+d x))}{2 d}+\frac {3 C \text {arctanh}(\sin (c+d x))}{8 d}+\frac {A \sec (c+d x) \tan (c+d x)}{2 d}+\frac {3 C \sec (c+d x) \tan (c+d x)}{8 d}+\frac {C \sec ^3(c+d x) \tan (c+d x)}{4 d} \] Input:

Integrate[Sec[c + d*x]^3*(A + C*Sec[c + d*x]^2),x]
 

Output:

(A*ArcTanh[Sin[c + d*x]])/(2*d) + (3*C*ArcTanh[Sin[c + d*x]])/(8*d) + (A*S 
ec[c + d*x]*Tan[c + d*x])/(2*d) + (3*C*Sec[c + d*x]*Tan[c + d*x])/(8*d) + 
(C*Sec[c + d*x]^3*Tan[c + d*x])/(4*d)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 4534, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{4} (4 A+3 C) \int \sec ^3(c+d x)dx+\frac {C \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (4 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {C \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{4} (4 A+3 C) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (4 A+3 C) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{4} (4 A+3 C) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

Input:

Int[Sec[c + d*x]^3*(A + C*Sec[c + d*x]^2),x]
 

Output:

(C*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((4*A + 3*C)*(ArcTanh[Sin[c + d*x] 
]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)))/4
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.21

method result size
derivativedivides \(\frac {A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+C \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(85\)
default \(\frac {A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+C \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(85\)
parts \(\frac {A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {C \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(87\)
parallelrisch \(\frac {-8 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (A +\frac {3 C}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+8 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (A +\frac {3 C}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (4 A +3 C \right ) \sin \left (3 d x +3 c \right )+4 \left (A +\frac {11 C}{4}\right ) \sin \left (d x +c \right )}{4 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(143\)
norman \(\frac {-\frac {\left (4 A -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{4 d}-\frac {\left (4 A -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{4 d}+\frac {\left (4 A +5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {\left (4 A +5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{4 d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {\left (4 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {\left (4 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(157\)
risch \(-\frac {i {\mathrm e}^{i \left (d x +c \right )} \left (4 A \,{\mathrm e}^{6 i \left (d x +c \right )}+3 C \,{\mathrm e}^{6 i \left (d x +c \right )}+4 A \,{\mathrm e}^{4 i \left (d x +c \right )}+11 C \,{\mathrm e}^{4 i \left (d x +c \right )}-4 A \,{\mathrm e}^{2 i \left (d x +c \right )}-11 C \,{\mathrm e}^{2 i \left (d x +c \right )}-4 A -3 C \right )}{4 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{2 d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{2 d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{8 d}\) \(199\)

Input:

int(sec(d*x+c)^3*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(A*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+C*(-(-1/4 
*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.36 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {{\left (4 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (4 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left ({\left (4 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, C\right )} \sin \left (d x + c\right )}{16 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate(sec(d*x+c)^3*(A+C*sec(d*x+c)^2),x, algorithm="fricas")
 

Output:

1/16*((4*A + 3*C)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - (4*A + 3*C)*cos(d 
*x + c)^4*log(-sin(d*x + c) + 1) + 2*((4*A + 3*C)*cos(d*x + c)^2 + 2*C)*si 
n(d*x + c))/(d*cos(d*x + c)^4)
 

Sympy [F]

\[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}\, dx \] Input:

integrate(sec(d*x+c)**3*(A+C*sec(d*x+c)**2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.39 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {{\left (4 \, A + 3 \, C\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (4 \, A + 3 \, C\right )} \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {2 \, {\left ({\left (4 \, A + 3 \, C\right )} \sin \left (d x + c\right )^{3} - {\left (4 \, A + 5 \, C\right )} \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1}}{16 \, d} \] Input:

integrate(sec(d*x+c)^3*(A+C*sec(d*x+c)^2),x, algorithm="maxima")
 

Output:

1/16*((4*A + 3*C)*log(sin(d*x + c) + 1) - (4*A + 3*C)*log(sin(d*x + c) - 1 
) - 2*((4*A + 3*C)*sin(d*x + c)^3 - (4*A + 5*C)*sin(d*x + c))/(sin(d*x + c 
)^4 - 2*sin(d*x + c)^2 + 1))/d
 

Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.40 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {{\left (4 \, A + 3 \, C\right )} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) - {\left (4 \, A + 3 \, C\right )} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (4 \, A \sin \left (d x + c\right )^{3} + 3 \, C \sin \left (d x + c\right )^{3} - 4 \, A \sin \left (d x + c\right ) - 5 \, C \sin \left (d x + c\right )\right )}}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{16 \, d} \] Input:

integrate(sec(d*x+c)^3*(A+C*sec(d*x+c)^2),x, algorithm="giac")
 

Output:

1/16*((4*A + 3*C)*log(abs(sin(d*x + c) + 1)) - (4*A + 3*C)*log(abs(sin(d*x 
 + c) - 1)) - 2*(4*A*sin(d*x + c)^3 + 3*C*sin(d*x + c)^3 - 4*A*sin(d*x + c 
) - 5*C*sin(d*x + c))/(sin(d*x + c)^2 - 1)^2)/d
 

Mupad [B] (verification not implemented)

Time = 11.40 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.10 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sin \left (c+d\,x\right )\,\left (\frac {A}{2}+\frac {5\,C}{8}\right )-{\sin \left (c+d\,x\right )}^3\,\left (\frac {A}{2}+\frac {3\,C}{8}\right )}{d\,\left ({\sin \left (c+d\,x\right )}^4-2\,{\sin \left (c+d\,x\right )}^2+1\right )}+\frac {\mathrm {atanh}\left (\sin \left (c+d\,x\right )\right )\,\left (\frac {A}{2}+\frac {3\,C}{8}\right )}{d} \] Input:

int((A + C/cos(c + d*x)^2)/cos(c + d*x)^3,x)
 

Output:

(sin(c + d*x)*(A/2 + (5*C)/8) - sin(c + d*x)^3*(A/2 + (3*C)/8))/(d*(sin(c 
+ d*x)^4 - 2*sin(c + d*x)^2 + 1)) + (atanh(sin(c + d*x))*(A/2 + (3*C)/8))/ 
d
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 312, normalized size of antiderivative = 4.46 \[ \int \sec ^3(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {-4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{4} a -3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{4} c +8 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a +6 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} c -4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a -3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) c +4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{4} a +3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{4} c -8 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a -6 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} c +4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a +3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) c -4 \sin \left (d x +c \right )^{3} a -3 \sin \left (d x +c \right )^{3} c +4 \sin \left (d x +c \right ) a +5 \sin \left (d x +c \right ) c}{8 d \left (\sin \left (d x +c \right )^{4}-2 \sin \left (d x +c \right )^{2}+1\right )} \] Input:

int(sec(d*x+c)^3*(A+C*sec(d*x+c)^2),x)
 

Output:

( - 4*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a - 3*log(tan((c + d*x)/2) 
 - 1)*sin(c + d*x)**4*c + 8*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a + 
6*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*c - 4*log(tan((c + d*x)/2) - 1 
)*a - 3*log(tan((c + d*x)/2) - 1)*c + 4*log(tan((c + d*x)/2) + 1)*sin(c + 
d*x)**4*a + 3*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**4*c - 8*log(tan((c + 
 d*x)/2) + 1)*sin(c + d*x)**2*a - 6*log(tan((c + d*x)/2) + 1)*sin(c + d*x) 
**2*c + 4*log(tan((c + d*x)/2) + 1)*a + 3*log(tan((c + d*x)/2) + 1)*c - 4* 
sin(c + d*x)**3*a - 3*sin(c + d*x)**3*c + 4*sin(c + d*x)*a + 5*sin(c + d*x 
)*c)/(8*d*(sin(c + d*x)**4 - 2*sin(c + d*x)**2 + 1))