\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\) [51]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 116 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^3 d}+\frac {2 B \sin (c+d x)}{3 b^2 d \sqrt {b \sec (c+d x)}} \] Output:

2*C*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d/cos(d*x+c)^(1/2)/(b*sec(d* 
x+c))^(1/2)+2/3*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))* 
(b*sec(d*x+c))^(1/2)/b^3/d+2/3*B*sin(d*x+c)/b^2/d/(b*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.70 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {B \sin (2 (c+d x))}{\sqrt {\cos (c+d x)}}}{3 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \] Input:

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]
 

Output:

(6*C*EllipticE[(c + d*x)/2, 2] + 2*B*EllipticF[(c + d*x)/2, 2] + (B*Sin[2* 
(c + d*x)])/Sqrt[Cos[c + d*x]])/(3*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + 
 d*x]])
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.344, Rules used = {3042, 4535, 27, 2030, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}+\int \frac {C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}+C \int \frac {\sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {C \int \frac {1}{\sqrt {b \sec (c+d x)}}dx}{b^2}+\frac {B \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}+\frac {B \int \frac {1}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {B \left (\frac {\int \sqrt {b \sec (c+d x)}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \left (\frac {\int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {C \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {B \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {B \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\)

Input:

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(5/2),x]
 

Output:

(2*C*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d 
*x]]) + (B*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + 
 d*x]])/(3*b^2*d) + (2*Sin[c + d*x])/(3*b*d*Sqrt[b*Sec[c + d*x]])))/b
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.84 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.34

method result size
parts \(\frac {B \left (\frac {2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-1-\sec \left (d x +c \right )\right )}{3}+\frac {2 \sin \left (d x +c \right )}{3}\right )}{d \sqrt {b \sec \left (d x +c \right )}\, b^{2}}+\frac {2 C \left (i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-\cos \left (d x +c \right )-2-\sec \left (d x +c \right )\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+\sin \left (d x +c \right )\right )}{b^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(272\)
default \(\frac {\frac {2 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (3 \cos \left (d x +c \right )+6+3 \sec \left (d x +c \right )\right )}{3}+\frac {2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-\cos \left (d x +c \right )-2-\sec \left (d x +c \right )\right )}{3}+\frac {2 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-3 \cos \left (d x +c \right )-6-3 \sec \left (d x +c \right )\right )}{3}+\frac {2 \sin \left (d x +c \right ) \left (\cos \left (d x +c \right )+1\right ) B}{3}+2 C \sin \left (d x +c \right )}{b^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(277\)

Input:

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x,method=_RETURNVER 
BOSE)
 

Output:

B/d*(2/3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Elli 
pticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(-1-sec(d*x+c))+2/3*sin(d*x+c))/(b*sec( 
d*x+c))^(1/2)/b^2+2*C/b^2/d/(cos(d*x+c)+1)/(b*sec(d*x+c))^(1/2)*(I*(1/(cos 
(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c 
)-cot(d*x+c)),I)*(-cos(d*x+c)-2-sec(d*x+c))+I*(1/(cos(d*x+c)+1))^(1/2)*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)*(cos 
(d*x+c)+2+sec(d*x+c))+sin(d*x+c))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.29 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {2 \, B \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, b^{3} d} \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"fricas")
 

Output:

1/3*(2*B*sqrt(b/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - I*sqrt(2)*B*sqrt 
(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)* 
B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I* 
sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b^3*d)
 

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(5/2),x)
 

Output:

Integral((B + C*sec(c + d*x))*sec(c + d*x)/(b*sec(c + d*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(5/2), x)
 

Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x, algorithm= 
"giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2),x)
 

Output:

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right ) c \right )}{b^{3}} \] Input:

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(b)*(int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x)*b + int(sqrt(sec(c + d 
*x))/sec(c + d*x),x)*c))/b**3