\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx\) [70]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 185 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^3 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{21 b^4 d}+\frac {2 B \sin (c+d x)}{5 b^2 d (b \sec (c+d x))^{3/2}}+\frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \] Output:

6/5*B*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^3/d/cos(d*x+c)^(1/2)/(b*sec( 
d*x+c))^(1/2)+2/21*(5*A+7*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2* 
c,2^(1/2))*(b*sec(d*x+c))^(1/2)/b^4/d+2/5*B*sin(d*x+c)/b^2/d/(b*sec(d*x+c) 
)^(3/2)+2/21*(5*A+7*C)*sin(d*x+c)/b^3/d/(b*sec(d*x+c))^(1/2)+2/7*A*tan(d*x 
+c)/d/(b*sec(d*x+c))^(7/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.36 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.96 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {504 i B \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-40 i (5 A+7 C) e^{i (c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )+\sqrt {1+e^{2 i (c+d x)}} (5 (23 A+28 C) \sin (c+d x)+3 (-84 i B+14 B \sin (2 (c+d x))+5 A \sin (3 (c+d x))))}{210 b^3 d \sqrt {1+e^{2 i (c+d x)}} \sqrt {b \sec (c+d x)}} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x 
]
 

Output:

((504*I)*B*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - (40*I 
)*(5*A + 7*C)*E^(I*(c + d*x))*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*( 
c + d*x))] + Sqrt[1 + E^((2*I)*(c + d*x))]*(5*(23*A + 28*C)*Sin[c + d*x] + 
 3*((-84*I)*B + 14*B*Sin[2*(c + d*x)] + 5*A*Sin[3*(c + d*x)])))/(210*b^3*d 
*Sqrt[1 + E^((2*I)*(c + d*x))]*Sqrt[b*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 4535, 3042, 4256, 3042, 4258, 3042, 3119, 4533, 3042, 4256, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \int \frac {C \sec ^2(c+d x)+A}{(b \sec (c+d x))^{7/2}}dx+\frac {B \int \frac {1}{(b \sec (c+d x))^{5/2}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \int \frac {1}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{b}\)

\(\Big \downarrow \) 4256

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \left (\frac {3 \int \frac {1}{\sqrt {b \sec (c+d x)}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \left (\frac {3 \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \left (\frac {3 \int \sqrt {\cos (c+d x)}dx}{5 b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \left (\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {(5 A+7 C) \int \frac {1}{(b \sec (c+d x))^{3/2}}dx}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(5 A+7 C) \int \frac {1}{\left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {(5 A+7 C) \left (\frac {\int \sqrt {b \sec (c+d x)}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(5 A+7 C) \left (\frac {\int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {(5 A+7 C) \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(5 A+7 C) \left (\frac {\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(5 A+7 C) \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}\right )}{7 b^2}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 b d (b \sec (c+d x))^{3/2}}\right )}{b}\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x]
 

Output:

(B*((6*EllipticE[(c + d*x)/2, 2])/(5*b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c 
 + d*x]]) + (2*Sin[c + d*x])/(5*b*d*(b*Sec[c + d*x])^(3/2))))/b + ((5*A + 
7*C)*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]] 
)/(3*b^2*d) + (2*Sin[c + d*x])/(3*b*d*Sqrt[b*Sec[c + d*x]])))/(7*b^2) + (2 
*A*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.81 (sec) , antiderivative size = 391, normalized size of antiderivative = 2.11

method result size
parts \(-\frac {2 A \left (\sin \left (d x +c \right ) \left (-3 \cos \left (d x +c \right )^{2}-5\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (5+5 \sec \left (d x +c \right )\right )\right )}{21 d \sqrt {b \sec \left (d x +c \right )}\, b^{3}}-\frac {2 B \left (\sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )^{2}-\cos \left (d x +c \right )-3\right )-3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}\, b^{3}}+\frac {C \left (-\frac {2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (1+\sec \left (d x +c \right )\right )}{3}+\frac {2 \sin \left (d x +c \right )}{3}\right )}{d \sqrt {b \sec \left (d x +c \right )}\, b^{3}}\) \(391\)
default \(-\frac {2 \left (63 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (-\cos \left (d x +c \right )-2-\sec \left (d x +c \right )\right )+25 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) A \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+63 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right ) B \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+35 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+5 \sin \left (d x +c \right ) \left (-3 \cos \left (d x +c \right )^{3}-3 \cos \left (d x +c \right )^{2}-5 \cos \left (d x +c \right )-5\right ) A +21 \sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )^{2}-\cos \left (d x +c \right )-3\right ) B +35 \sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )-1\right ) C \right )}{105 d \,b^{3} \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(401\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/21*A/d/(b*sec(d*x+c))^(1/2)/b^3*(sin(d*x+c)*(-3*cos(d*x+c)^2-5)+I*(1/(c 
os(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x 
+c)-cot(d*x+c)),I)*(5+5*sec(d*x+c)))-2/5*B/d/(cos(d*x+c)+1)/(b*sec(d*x+c)) 
^(1/2)/b^3*(sin(d*x+c)*(-cos(d*x+c)^2-cos(d*x+c)-3)-3*I*(1/(cos(d*x+c)+1)) 
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c 
)),I)*(cos(d*x+c)+2+sec(d*x+c))+3*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+2+sec(d*x+c))*EllipticF(I*(csc(d*x+c)-cot 
(d*x+c)),I))+C/d*(-2/3*I*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c)- 
cot(d*x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1+sec(d*x+c))+2/3*sin(d* 
x+c))/(b*sec(d*x+c))^(1/2)/b^3
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.04 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=-\frac {5 \, \sqrt {2} {\left (5 i \, A + 7 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-5 i \, A - 7 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (15 \, A \cos \left (d x + c\right )^{3} + 21 \, B \cos \left (d x + c\right )^{2} + 5 \, {\left (5 \, A + 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, b^{4} d} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorith 
m="fricas")
 

Output:

-1/105*(5*sqrt(2)*(5*I*A + 7*I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-5*I*A - 7*I*C)*sqrt(b)*weierstrass 
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 63*I*sqrt(2)*B*sqrt(b)*we 
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + 
 c))) + 63*I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(15*A*cos(d*x + c)^3 + 21*B*cos 
(d*x + c)^2 + 5*(5*A + 7*C)*cos(d*x + c))*sqrt(b/cos(d*x + c))*sin(d*x + c 
))/(b^4*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(7/2), 
x)
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(7/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(7/2),x)
                                                                                    
                                                                                    
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(7/2), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{4}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) c \right )}{b^{4}} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x)
 

Output:

(sqrt(b)*(int(sqrt(sec(c + d*x))/sec(c + d*x)**4,x)*a + int(sqrt(sec(c + d 
*x))/sec(c + d*x)**3,x)*b + int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x)*c))/ 
b**4