\(\int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [977]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 50, antiderivative size = 316 \[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b \sqrt {a+b} (B-C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 \sqrt {a+b} (b B-a C) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d} \] Output:

-2*(a-b)*(a+b)^(1/2)*C*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^( 
1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c) 
)/(a-b))^(1/2)/d+2*b*(a+b)^(1/2)*(B-C)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c 
))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*( 
-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*(a+b)^(1/2)*(B*b-C*a)*cot(d*x+c)*Ellipt 
icPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1 
-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(965\) vs. \(2(316)=632\).

Time = 18.09 (sec) , antiderivative size = 965, normalized size of antiderivative = 3.05 \[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

Integrate[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/Sqrt 
[a + b*Sec[c + d*x]],x]
 

Output:

(2*b*C*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(b*B - a*C + b*C*Sec[c + d*x] 
)*Sin[c + d*x])/(d*(b*C + b*B*Cos[c + d*x] - a*C*Cos[c + d*x])) + (2*Sqrt[ 
a + b*Sec[c + d*x]]*(b*B - a*C + b*C*Sec[c + d*x])*(a*b*C*Tan[(c + d*x)/2] 
 + b^2*C*Tan[(c + d*x)/2] - 2*a*b*C*Tan[(c + d*x)/2]^3 + a*b*C*Tan[(c + d* 
x)/2]^5 - b^2*C*Tan[(c + d*x)/2]^5 - 2*a*b*B*EllipticPi[-1, ArcSin[Tan[(c 
+ d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a* 
Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*a^2*C*EllipticPi[- 
1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2] 
*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a 
*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d* 
x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + 
b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*a^2*C*EllipticPi[-1, ArcSin[Tan[(c + d* 
x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*S 
qrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + b*(a 
+ b)*C*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[( 
c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 
 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (-(a*b*B) + a^2*C + b^2*(B + C))*Ellip 
ticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^ 
2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c 
+ d*x)/2]^2)/(a + b)]))/(d*Sqrt[b + a*Cos[c + d*x]]*(b*C + b*B*Cos[c + ...
 

Rubi [A] (verified)

Time = 1.17 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4529, 3042, 4404, 3042, 4271, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^2 (-C)+a b B+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2 (-C)+a b B+b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )+b^2 C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4529

\(\displaystyle \frac {\int \sqrt {a+b \sec (c+d x)} \left (C \sec (c+d x) b^3+(b B-a C) b^2\right )dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right ) b^3+(b B-a C) b^2\right )dx}{b^2}\)

\(\Big \downarrow \) 4404

\(\displaystyle \frac {a b^2 (b B-a C) \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+\int \frac {\sec (c+d x) \left (C \sec (c+d x) b^4+a C b^3+(b B-a C) b^3\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a b^2 (b B-a C) \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (C \csc \left (c+d x+\frac {\pi }{2}\right ) b^4+a C b^3+(b B-a C) b^3\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (C \csc \left (c+d x+\frac {\pi }{2}\right ) b^4+a C b^3+(b B-a C) b^3\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b^2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b^2}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {b^4 (B-C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+b^4 C \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\frac {2 b^2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^4 (B-C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b^4 C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b^2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b^2}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {b^4 C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b^3 \sqrt {a+b} (B-C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 b^2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{b^2}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {2 b^3 \sqrt {a+b} (B-C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 b^2 \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 b^2 C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}}{b^2}\)

Input:

Int[(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2)/Sqrt[a + b 
*Sec[c + d*x]],x]
 

Output:

((-2*(a - b)*b^2*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Se 
c[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a 
+ b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b^3*Sqrt[a + b]*(B - 
 C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], ( 
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
+ d*x]))/(a - b))])/d - (2*b^2*Sqrt[a + b]*(b*B - a*C)*Cot[c + d*x]*Ellipt 
icPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - 
 b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a 
 - b))])/d)/b^2
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4404
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[a*c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] 
+ Int[Csc[e + f*x]*((b*c + a*d + b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]] 
), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4529
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[1/b^2 
Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Csc[e + f*x], x], x], 
 x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(641\) vs. \(2(289)=578\).

Time = 31.68 (sec) , antiderivative size = 642, normalized size of antiderivative = 2.03

method result size
parts \(-\frac {2 a \left (B b -C a \right ) \left (2 \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )-\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}-\frac {2 B \,b^{2} \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}-\frac {2 C b \left (\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )-\sin \left (d x +c \right ) \cos \left (d x +c \right ) a -\sin \left (d x +c \right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(642\)
default \(\frac {\left (\cos \left (d x +c \right )+1\right )^{2} \left (\left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) C a b +\left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) b^{2} C -2 B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a b +2 B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b^{2}+4 B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right ) a b +2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a^{2}+2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a b -2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-4 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right ) a^{2}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{2 d \left (b +a \cos \left (d x +c \right )\right )}\) \(807\)

Input:

int((B*a*b-C*a^2+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/ 
2),x,method=_RETURNVERBOSE)
 

Output:

-2*a*(B*b-C*a)/d*(2*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,((a-b)/(a+b))^(1/ 
2))-EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2)))*(cos(d*x+c)+1)* 
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1) 
)^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))-2*B*b^2/d*(cos(d*x+c)+1)*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)) 
^(1/2)*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*(a+b*sec(d*x+ 
c))^(1/2)/(b+a*cos(d*x+c))-2*C*b/d*((-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2) 
*a*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2* 
cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/ 
(cos(d*x+c)+1))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/ 
2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+ 
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*EllipticF(-csc(d*x+c)+cot(d*x+ 
c),((a-b)/(a+b))^(1/2))-sin(d*x+c)*cos(d*x+c)*a-sin(d*x+c)*b)*(a+b*sec(d*x 
+c))^(1/2)/(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+c)+b)
 

Fricas [F]

\[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((B*a*b-C*a^2+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c 
))^(1/2),x, algorithm="fricas")
 

Output:

integral((C*b*sec(d*x + c) - C*a + B*b)*sqrt(b*sec(d*x + c) + a), x)
 

Sympy [F]

\[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=- \int \left (- B b \sqrt {a + b \sec {\left (c + d x \right )}}\right )\, dx - \int C a \sqrt {a + b \sec {\left (c + d x \right )}}\, dx - \int \left (- C b \sqrt {a + b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\right )\, dx \] Input:

integrate((B*a*b-C*a**2+b**2*B*sec(d*x+c)+b**2*C*sec(d*x+c)**2)/(a+b*sec(d 
*x+c))**(1/2),x)
 

Output:

-Integral(-B*b*sqrt(a + b*sec(c + d*x)), x) - Integral(C*a*sqrt(a + b*sec( 
c + d*x)), x) - Integral(-C*b*sqrt(a + b*sec(c + d*x))*sec(c + d*x), x)
 

Maxima [F]

\[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((B*a*b-C*a^2+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c 
))^(1/2),x, algorithm="maxima")
 

Output:

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)/sqrt 
(b*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C b^{2} \sec \left (d x + c\right )^{2} + B b^{2} \sec \left (d x + c\right ) - C a^{2} + B a b}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((B*a*b-C*a^2+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c 
))^(1/2),x, algorithm="giac")
 

Output:

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)/sqrt 
(b*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\frac {B\,b^2}{\cos \left (c+d\,x\right )}-C\,a^2+\frac {C\,b^2}{{\cos \left (c+d\,x\right )}^2}+B\,a\,b}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b)/(a + b 
/cos(c + d*x))^(1/2),x)
 

Output:

int(((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b)/(a + b 
/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\left (\int \sqrt {\sec \left (d x +c \right ) b +a}d x \right ) a c +\left (\int \sqrt {\sec \left (d x +c \right ) b +a}d x \right ) b^{2}+\left (\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )d x \right ) b c \] Input:

int((B*a*b-C*a^2+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/ 
2),x)
 

Output:

 - int(sqrt(sec(c + d*x)*b + a),x)*a*c + int(sqrt(sec(c + d*x)*b + a),x)*b 
**2 + int(sqrt(sec(c + d*x)*b + a)*sec(c + d*x),x)*b*c