\(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\) [1014]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 178 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {2 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a b (a+b) d}+\frac {2 C \sqrt {\sec (c+d x)} \sin (c+d x)}{b d} \] Output:

-2*C*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/ 
2)/b/d+2*A*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x 
+c)^(1/2)/a/d-2*(A*b^2-a*(B*b-C*a))*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d* 
x+1/2*c),2*a/(a+b),2^(1/2))*sec(d*x+c)^(1/2)/a/b/(a+b)/d+2*C*sec(d*x+c)^(1 
/2)*sin(d*x+c)/b/d
 

Mathematica [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx \] Input:

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ b*Sec[c + d*x]),x]
 

Output:

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ b*Sec[c + d*x]), x]
 

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.349, Rules used = {3042, 4590, 27, 3042, 4594, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4590

\(\displaystyle \frac {2 \int -\frac {-\left ((b B-a C) \sec ^2(c+d x)\right )-b (A-C) \sec (c+d x)+a C}{2 \sqrt {\sec (c+d x)} (a+b \sec (c+d x))}dx}{b}+\frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\int \frac {-\left ((b B-a C) \sec ^2(c+d x)\right )-b (A-C) \sec (c+d x)+a C}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\int \frac {(a C-b B) \csc \left (c+d x+\frac {\pi }{2}\right )^2-b (A-C) \csc \left (c+d x+\frac {\pi }{2}\right )+a C}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\)

\(\Big \downarrow \) 4594

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\int \frac {a^2 C-a A b \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)}dx}{a}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\int \frac {a^2 C-a A b \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {a^2 C \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a A b \int \sqrt {\sec (c+d x)}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {a^2 C \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a A b \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\frac {2 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}+\frac {\frac {2 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}}{b}\)

\(\Big \downarrow \) 4336

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}+\frac {\frac {2 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}+\frac {\frac {2 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}}{b}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {\frac {\frac {2 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a A b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)}}{b}\)

Input:

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Se 
c[c + d*x]),x]
 

Output:

-((((2*a^2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x 
]])/d - (2*a*A*b*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + 
 d*x]])/d)/a^2 + (2*(A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d*x]]*EllipticPi[ 
(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a + b)*d))/b) + (2* 
C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(b*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4590
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1 
)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Simp[d/(b*(m + n + 1)) 
   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + ( 
A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C*n)*Csc 
[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 
 - b^2, 0] && GtQ[n, 0]
 

rule 4594
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2)   Int[(d*Csc[e + 
f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a*A - (A*b - a 
*B)*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, 
B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(380\) vs. \(2(169)=338\).

Time = 6.11 (sec) , antiderivative size = 381, normalized size of antiderivative = 2.14

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 C \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\right )}{b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {2 \left (A \,b^{2}-B a b +C \,a^{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{b \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(381\)

Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x,me 
thod=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
C/b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)- 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(si 
n(1/2*d*x+1/2*c)^2)^(1/2))+2*(A*b^2-B*a*b+C*a^2)/b/(a^2-a*b)*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/ 
2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \] Input:

integrate(sec(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+ 
c)),x)
 

Output:

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(sec(c + d*x))/(a + 
b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*se 
c(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*se 
c(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
b/cos(c + d*x)),x)
 

Output:

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
b/cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right ) b +a}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right ) b +a}d x \right ) b \] Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x)
 

Output:

int(sqrt(sec(c + d*x))/(sec(c + d*x)*b + a),x)*a + int((sqrt(sec(c + d*x)) 
*sec(c + d*x)**2)/(sec(c + d*x)*b + a),x)*c + int((sqrt(sec(c + d*x))*sec( 
c + d*x))/(sec(c + d*x)*b + a),x)*b