\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+C \sec ^2(c+d x)) \, dx\) [1086]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 95 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \] Output:

2*a*(A-C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(A+3*C)*InverseJac 
obiAM(1/2*d*x+1/2*c,2^(1/2))/d+2*a*C*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a*A 
*cos(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.21 (sec) , antiderivative size = 269, normalized size of antiderivative = 2.83 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-4 (A+3 C) \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+\frac {\csc (c) \left (9 (A-C) \cos (c-d x-\arctan (\tan (c))) \sec (c)+3 (A-C) \cos (c+d x+\arctan (\tan (c))) \sec (c)+2 \sqrt {\sec ^2(c)} (-3 (A-2 C) \cos (d x)-3 A \cos (2 c+d x)+A \sin (c) \sin (2 (c+d x)))\right )}{\sqrt {\sec ^2(c)}}-\frac {6 (A-C) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sec (c) \sin (d x+\arctan (\tan (c)))}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}}\right )}{12 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2),x 
]
 

Output:

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(-4*(A + 3*C)*Cos[c + d*x]*Sqrt[C 
os[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*HypergeometricPFQ[{1/4, 1/2}, { 
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + (Csc 
[c]*(9*(A - C)*Cos[c - d*x - ArcTan[Tan[c]]]*Sec[c] + 3*(A - C)*Cos[c + d* 
x + ArcTan[Tan[c]]]*Sec[c] + 2*Sqrt[Sec[c]^2]*(-3*(A - 2*C)*Cos[d*x] - 3*A 
*Cos[2*c + d*x] + A*Sin[c]*Sin[2*(c + d*x)])))/Sqrt[Sec[c]^2] - (6*(A - C) 
*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sec[c 
]*Sin[d*x + ArcTan[Tan[c]]])/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]] 
]^2])))/(12*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.03, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 4602, 3042, 3511, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a) \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{3/2} (a \sec (c+d x)+a) \left (A+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4602

\(\displaystyle \int \frac {(a \cos (c+d x)+a) \left (A \cos ^2(c+d x)+C\right )}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+C\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle 2 \int \frac {a A \cos ^2(c+d x)+a (A-C) \cos (c+d x)+a C}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {a A \cos ^2(c+d x)+a (A-C) \cos (c+d x)+a C}{\sqrt {\cos (c+d x)}}dx+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a A \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+a C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{3} \int \frac {a (A+3 C)+3 a (A-C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {a (A+3 C)+3 a (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {a (A+3 C)+3 a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (a (A+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a (A-C) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2),x]
 

Output:

((6*a*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A + 3*C)*EllipticF[(c + 
 d*x)/2, 2])/d)/3 + (2*a*C*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*a*A*S 
qrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 4602
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[d^( 
m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A*Cos 
[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] 
 && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(287\) vs. \(2(90)=180\).

Time = 3.36 (sec) , antiderivative size = 288, normalized size of antiderivative = 3.03

method result size
default \(-\frac {2 a \left (4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) A +A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) C +3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(288\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/3*a*(4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*sin(1/2*d*x+1/2*c)^2 
*cos(1/2*d*x+1/2*c)*A+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2))-6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*C+3*C*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2 
*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.00 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {-i \, \sqrt {2} {\left (A + 3 \, C\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + 3 \, C\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (A a \cos \left (d x + c\right ) + 3 \, C a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

1/3*(-I*sqrt(2)*(A + 3*C)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + I*sqrt(2)*(A + 3*C)*a*cos(d*x + c)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*(A - C)*a*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c))) - 3*I*sqrt(2)*(A - C)*a*cos(d*x + c)*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(A*a*cos 
(d*x + c) + 3*C*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), 
x)
 

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.18 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(3/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)),x)
 

Output:

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*A*a*ellipticE(c/2 + (d*x)/2, 2))/d + (2*C*a*ellipticF(c/2 + (d*x) 
/2, 2))/d + (2*C*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2 
))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*c + int(sqrt(cos 
(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*c + int(sqrt(cos(c + d*x))*cos( 
c + d*x)*sec(c + d*x),x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a)