\(\int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [1129]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 122 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (7 A+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d} \] Output:

2/15*a*(7*A+15*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+2/1 
5*A*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+2/5*A*cos(d*x+c)^ 
(3/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.56 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {\cos (c+d x)} (19 A+30 C+8 A \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{15 d} \] Input:

Integrate[Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^ 
2),x]
 

Output:

(Sqrt[Cos[c + d*x]]*(19*A + 30*C + 8*A*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)] 
)*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(15*d)
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.26, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.243, Rules used = {3042, 4753, 3042, 4575, 27, 3042, 4501, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{5/2} \sqrt {a \sec (c+d x)+a} \left (A+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x) a+a} \left (C \sec ^2(c+d x)+A\right )}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int \frac {\sqrt {\sec (c+d x) a+a} (a A+a (2 A+5 C) \sec (c+d x))}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x) a+a} (a A+a (2 A+5 C) \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A+a (2 A+5 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{3} a (7 A+15 C) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{3} a (7 A+15 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4291

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a^2 (7 A+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

Input:

Int[Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c 
 + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((2*a^2*(7*A + 15*C)*Sqrt[Sec[c + d*x] 
]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*A*Sqrt[a + a*Sec[c + 
 d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]))/(5*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 1.59 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.56

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (3 \cos \left (d x +c \right )^{2}+4 \cos \left (d x +c \right )+8\right ) A +15 C \right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(68\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x,method=_R 
ETURNVERBOSE)
 

Output:

2/15/d*sin(d*x+c)*((3*cos(d*x+c)^2+4*cos(d*x+c)+8)*A+15*C)*cos(d*x+c)^(1/2 
)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.62 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{2} + 4 \, A \cos \left (d x + c\right ) + 8 \, A + 15 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="fricas")
                                                                                    
                                                                                    
 

Output:

2/15*(3*A*cos(d*x + c)^2 + 4*A*cos(d*x + c) + 8*A + 15*C)*sqrt((a*cos(d*x 
+ c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c) + 
d)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(1/2)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (104) = 208\).

Time = 0.23 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.89 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {2} {\left (30 \, \cos \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \cos \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 30 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 5 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 6 \, \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 30 \, \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} A \sqrt {a} + 120 \, \sqrt {2} C \sqrt {a} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )}{60 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="maxima")
 

Output:

1/60*(sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2* 
c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/ 
2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*ar 
ctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c 
)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2 
*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2* 
c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A* 
sqrt(a) + 120*sqrt(2)*C*sqrt(a)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c) 
)))/d
 

Giac [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.21 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left ({\left (\sqrt {2} {\left (7 \, A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 15 \, C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 10 \, \sqrt {2} {\left (A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, \sqrt {2} {\left (A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{15 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}} d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="giac")
 

Output:

2/15*((sqrt(2)*(7*A*a^3*sgn(cos(d*x + c)) + 15*C*a^3*sgn(cos(d*x + c)))*ta 
n(1/2*d*x + 1/2*c)^2 + 10*sqrt(2)*(A*a^3*sgn(cos(d*x + c)) + 3*C*a^3*sgn(c 
os(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 15*sqrt(2)*(A*a^3*sgn(cos(d*x + c) 
) + C*a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c 
)^2 + a)^(5/2)*d)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2),x 
)
 

Output:

int(cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2), 
x)
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**2*sec 
(c + d*x)**2,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + 
d*x)**2,x)*a)