\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [1133]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 189 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {a} (8 A+5 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a C \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (8 A+5 C) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x)} \] Output:

1/8*a^(1/2)*(8*A+5*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*c 
os(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/12*a*C*sin(d*x+c)/d/cos(d*x+c)^(5/2)/ 
(a+a*sec(d*x+c))^(1/2)+1/8*a*(8*A+5*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a* 
sec(d*x+c))^(1/2)+1/3*C*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(5/ 
2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 0.53 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \left (3 (8 A+5 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+10 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+8 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)+3 (8 A+5 C) \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \sin (c+d x)}{24 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Cos[c + d*x]^( 
3/2),x]
 

Output:

(a*Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*(3*(8*A + 5*C)*ArcSin[Sqrt[1 - Se 
c[c + d*x]]] + 10*C*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 8*C*Sqrt[1 
 - Sec[c + d*x]]*Sec[c + d*x]^(5/2) + 3*(8*A + 5*C)*Sqrt[-((-1 + Sec[c + d 
*x])*Sec[c + d*x])])*Sin[c + d*x])/(24*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 
+ Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.02, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4753, 3042, 4577, 27, 3042, 4504, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+C \sec (c+d x)^2\right )}{\cos (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} \left (C \sec ^2(c+d x)+A\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx\)

\(\Big \downarrow \) 4577

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (3 a (2 A+C)+a C \sec (c+d x))dx}{3 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (3 a (2 A+C)+a C \sec (c+d x))dx}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 a (2 A+C)+a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 4504

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3}{4} a (8 A+5 C) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3}{4} a (8 A+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 4290

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3}{4} a (8 A+5 C) \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3}{4} a (8 A+5 C) \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3}{4} a (8 A+5 C) \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {3}{4} a (8 A+5 C) \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )\)

Input:

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/Cos[c + d*x]^(3/2),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((C*Sec[c + d*x]^(5/2)*Sqrt[a + a*Se 
c[c + d*x]]*Sin[c + d*x])/(3*d) + ((a^2*C*Sec[c + d*x]^(5/2)*Sin[c + d*x]) 
/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*a*(8*A + 5*C)*((Sqrt[a]*ArcSinh[(Sqrt 
[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sec[c + d*x]^(3/2)*Sin 
[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4)/(6*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4577
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C) 
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1))), 
x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n 
*Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
 b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && 
!LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 3.05 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.62

method result size
default \(\frac {\left (-24 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-15 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-24 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-15 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}+24 A \sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+\sin \left (d x +c \right ) \left (15 \cos \left (d x +c \right )^{2}+10 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{48 d \cos \left (d x +c \right )^{\frac {5}{2}} \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(306\)

Input:

int((a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/48/d*(-24*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1 
/2))*cos(d*x+c)^3-15*C*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos(d*x+ 
c)+1))^(1/2))*cos(d*x+c)^3-24*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/ 
(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3-15*C*arctan(1/2*(-cot(d*x+c)+csc(d*x+c 
)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3+24*A*2^(1/2)*sin(d*x+c)*(-2/( 
cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+sin(d*x+c)*(15*cos(d*x+c)^2+10*cos(d*x+c 
)+8)*2^(1/2)*C*(-2/(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)/cos(d*x 
+c)^(5/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 427, normalized size of antiderivative = 2.26 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {4 \, {\left (3 \, {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, C \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {2 \, {\left (3 \, {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, C \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="fricas")
 

Output:

[1/96*(4*(3*(8*A + 5*C)*cos(d*x + c)^2 + 10*C*cos(d*x + c) + 8*C)*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*((8*A 
+ 5*C)*cos(d*x + c)^4 + (8*A + 5*C)*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x 
 + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) 
- 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x 
+ c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3), 1/48*(2* 
(3*(8*A + 5*C)*cos(d*x + c)^2 + 10*C*cos(d*x + c) + 8*C)*sqrt((a*cos(d*x + 
 c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*((8*A + 5*C)*co 
s(d*x + c)^4 + (8*A + 5*C)*cos(d*x + c)^3)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt 
((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos 
(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3 
)]
 

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + C \sec ^{2}{\left (c + d x \right )}\right )}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*sec(d*x+c))**(1/2)*(A+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2),x)
 

Output:

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + C*sec(c + d*x)**2)/cos(c + d*x)** 
(3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2740 vs. \(2 (159) = 318\).

Time = 0.37 (sec) , antiderivative size = 2740, normalized size of antiderivative = 14.50 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="maxima")
 

Output:

-1/96*(24*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d* 
x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d* 
x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arcta 
n2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c) 
, cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) 
+ 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)* 
log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(s 
in(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), co 
s(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) 
 - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log( 
2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d 
*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d* 
x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + ( 
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*co 
s(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + 
 c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + 
c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sq 
rt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + 
c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x +...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 783 vs. \(2 (159) = 318\).

Time = 0.58 (sec) , antiderivative size = 783, normalized size of antiderivative = 4.14 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="giac")
 

Output:

1/48*(3*(8*A*sqrt(a)*sgn(cos(d*x + c)) + 5*C*sqrt(a)*sgn(cos(d*x + c)))*lo 
g(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^ 
2 - a*(2*sqrt(2) + 3))) - 3*(8*A*sqrt(a)*sgn(cos(d*x + c)) + 5*C*sqrt(a)*s 
gn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d 
*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(72*sqrt(2)*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A*a^(3/2)*sgn(cos 
(d*x + c)) + 63*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
 + 1/2*c)^2 + a))^10*C*a^(3/2)*sgn(cos(d*x + c)) - 888*sqrt(2)*(sqrt(a)*ta 
n(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a^(5/2)*sgn(c 
os(d*x + c)) - 369*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2* 
d*x + 1/2*c)^2 + a))^8*C*a^(5/2)*sgn(cos(d*x + c)) + 3024*sqrt(2)*(sqrt(a) 
*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^(7/2)*sg 
n(cos(d*x + c)) + 1638*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan( 
1/2*d*x + 1/2*c)^2 + a))^6*C*a^(7/2)*sgn(cos(d*x + c)) - 1776*sqrt(2)*(sqr 
t(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*a^(9/2 
)*sgn(cos(d*x + c)) - 1074*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a))^4*C*a^(9/2)*sgn(cos(d*x + c)) + 360*sqrt(2)*( 
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^( 
11/2)*sgn(cos(d*x + c)) + 171*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt 
(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^(11/2)*sgn(cos(d*x + c)) - 24*sqr...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(3/2) 
,x)
 

Output:

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(3/2) 
, x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2}}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a \right ) \] Input:

int((a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**2)/c 
os(c + d*x)**2,x)*c + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos( 
c + d*x)**2,x)*a)