\(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [1140]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 191 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (8 A+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a^2 (8 A-5 C) \sin (c+d x)}{4 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {3 a C \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}+\frac {C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d \sqrt {\cos (c+d x)}} \] Output:

1/4*a^(3/2)*(8*A+7*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*c 
os(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/4*a^2*(8*A-5*C)*sin(d*x+c)/d/cos(d*x+ 
c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+3/4*a*C*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/ 
d/cos(d*x+c)^(1/2)+1/2*C*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(1 
/2)
 

Mathematica [A] (warning: unable to verify)

Time = 2.72 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.60 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 \left ((8 A+7 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}+\sqrt {1-\sec (c+d x)} \left (8 A+7 C \sec (c+d x)+2 C \sec ^2(c+d x)\right )\right ) \sin (c+d x)}{4 d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x 
]^2),x]
 

Output:

(a^2*((8*A + 7*C)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]] + Sqrt 
[1 - Sec[c + d*x]]*(8*A + 7*C*Sec[c + d*x] + 2*C*Sec[c + d*x]^2))*Sin[c + 
d*x])/(4*d*Sqrt[-1 + Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.25 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.351, Rules used = {3042, 4753, 3042, 4577, 27, 3042, 4506, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2} \left (A+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{3/2} \left (C \sec ^2(c+d x)+A\right )}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4577

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {(\sec (c+d x) a+a)^{3/2} (a (4 A-C)+3 a C \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx}{2 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {(\sec (c+d x) a+a)^{3/2} (a (4 A-C)+3 a C \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (4 A-C)+3 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 4506

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x) a+a} \left ((8 A-5 C) a^2+(8 A+7 C) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x)}}dx+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((8 A-5 C) a^2+(8 A+7 C) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x)}}dx+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((8 A-5 C) a^2+(8 A+7 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} \left (a^2 (8 A+7 C) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^3 (8 A-5 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} \left (a^2 (8 A+7 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^3 (8 A-5 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} \left (\frac {2 a^3 (8 A-5 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (8 A+7 C) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {3 a^2 C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}+\frac {1}{2} \left (\frac {2 a^{5/2} (8 A+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (8 A-5 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )}{4 a}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\right )\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((C*Sqrt[Sec[c + d*x]]*(a + a*Sec[c 
+ d*x])^(3/2)*Sin[c + d*x])/(2*d) + ((3*a^2*C*Sqrt[Sec[c + d*x]]*Sqrt[a + 
a*Sec[c + d*x]]*Sin[c + d*x])/d + ((2*a^(5/2)*(8*A + 7*C)*ArcSinh[(Sqrt[a] 
*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^3*(8*A - 5*C)*Sqrt[Sec[ 
c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/2)/(4*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4577
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C) 
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1))), 
x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n 
*Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
 b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && 
!LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(379\) vs. \(2(161)=322\).

Time = 4.40 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.99

method result size
default \(-\frac {\left (\sqrt {2}\, A \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (4 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}\right )-7 C \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sqrt {2}\, A \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (4 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}\right )-7 C \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right ) \left (-7 \cos \left (d x +c \right )-2\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}-16 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, a}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(380\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/8/d*(2^(1/2)*A*(-1/(cos(d*x+c)+1))^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*arct 
an(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))*(4*cos(d*x+c)^ 
3+4*cos(d*x+c)^2)-7*C*cos(d*x+c)^2*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(c 
ot(d*x+c)-csc(d*x+c)+1))+2^(1/2)*A*(-1/(cos(d*x+c)+1))^(1/2)*(-2/(cos(d*x+ 
c)+1))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2 
))*(4*cos(d*x+c)^3+4*cos(d*x+c)^2)-7*C*cos(d*x+c)^2*arctan(1/2*(cot(d*x+c) 
-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))+sin(d*x+c)*(-7*cos(d*x+c)-2)*2^( 
1/2)*C*(-2/(cos(d*x+c)+1))^(1/2)-16*A*cos(d*x+c)^2*sin(d*x+c)*(-1/(cos(d*x 
+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)*a/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1 
))^(1/2)/cos(d*x+c)^(3/2)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.21 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {4 \, {\left (8 \, A a \cos \left (d x + c\right )^{2} + 7 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{3} + {\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left (8 \, A a \cos \left (d x + c\right )^{2} + 7 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{3} + {\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{8 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="fricas")
 

Output:

[1/16*(4*(8*A*a*cos(d*x + c)^2 + 7*C*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d 
*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((8*A + 7*C)* 
a*cos(d*x + c)^3 + (8*A + 7*C)*a*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + 
c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2 
)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c 
)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), 1/8*(2*(8*A 
*a*cos(d*x + c)^2 + 7*C*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/ 
cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((8*A + 7*C)*a*cos(d*x + c 
)^3 + (8*A + 7*C)*a*cos(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos 
(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + 
c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2520 vs. \(2 (161) = 322\).

Time = 0.33 (sec) , antiderivative size = 2520, normalized size of antiderivative = 13.19 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="maxima")
 

Output:

1/16*(4*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + s 
qrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt( 
2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a* 
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/ 
2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 8*a*sin(1/2*d*x + 1 
/2*c))*A*sqrt(a) - (56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/ 
2*c))) - 24*sqrt(2)*a*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12 
*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x 
 + 3/2*c), cos(3/2*d*x + 3/2*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 
7*sqrt(2)*a*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 
 3*sqrt(2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
- 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*(3*sqrt 
(2)*a*sin(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2 
*c), cos(3/2*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 442 vs. \(2 (161) = 322\).

Time = 0.59 (sec) , antiderivative size = 442, normalized size of antiderivative = 2.31 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="giac")
 

Output:

1/8*(16*sqrt(2)*A*a^2*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/ 
2*d*x + 1/2*c)^2 + a) + (8*A*a^(3/2)*sgn(cos(d*x + c)) + 7*C*a^(3/2)*sgn(c 
os(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 
 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - (8*A*a^(3/2)*sgn(cos(d*x + c)) + 
 7*C*a^(3/2)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sq 
rt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(7*( 
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*a^( 
5/2)*sgn(cos(d*x + c)) - 95*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2 
*d*x + 1/2*c)^2 + a))^4*C*a^(7/2)*sgn(cos(d*x + c)) + 53*(sqrt(a)*tan(1/2* 
d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^(9/2)*sgn(cos(d*x 
 + c)) - 5*C*a^(11/2)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - 
sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - 
sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/d
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2),x 
)
 

Output:

int(cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**3,x 
)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**2,x)*c + 
 int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x),x)*a + int(sqr 
t(sec(c + d*x) + 1)*sqrt(cos(c + d*x)),x)*a)