\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx\) [1164]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 185 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}+\frac {(3 A-5 C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \] Output:

2*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*se 
c(d*x+c)^(1/2)/a^(3/2)/d+1/4*(3*A-5*C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2 
)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^( 
1/2)*2^(1/2)/a^(3/2)/d-1/2*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d* 
x+c))^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 2.71 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.18 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {-2 (A+C) \sqrt {(-1+\cos (c+d x)) \sec ^2(c+d x)} \sin (c+d x)-2 \sqrt {2} (3 A-5 C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \tan (c+d x)-2 C \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (\sin (c+d x)+\tan (c+d x))-10 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) (\sin (c+d x)+\tan (c+d x))}{4 a d \sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sqrt {(-1+\cos (c+d x)) \sec ^2(c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^ 
(3/2)),x]
 

Output:

(-2*(A + C)*Sqrt[(-1 + Cos[c + d*x])*Sec[c + d*x]^2]*Sin[c + d*x] - 2*Sqrt 
[2]*(3*A - 5*C)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]] 
]*Cos[(c + d*x)/2]^2*Tan[c + d*x] - 2*C*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(Si 
n[c + d*x] + Tan[c + d*x]) - 10*C*ArcSin[Sqrt[Sec[c + d*x]]]*(Sin[c + d*x] 
 + Tan[c + d*x]))/(4*a*d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sqrt[(-1 + 
Cos[c + d*x])*Sec[c + d*x]^2]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.92, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4753, 3042, 4573, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)} \left (C \sec ^2(c+d x)+A\right )}{(\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int -\frac {\sqrt {\sec (c+d x)} (a (3 A-C)+4 a C \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)} (a (3 A-C)+4 a C \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a (3 A-C)+4 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (3 A-5 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx+4 C \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (3 A-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+4 C \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (3 A-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {8 C \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (3 A-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 a (3 A-5 C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\sqrt {2} \sqrt {a} (3 A-5 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

Input:

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)) 
,x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((8*Sqrt[a]*C*ArcSinh[(Sqrt[a]*Tan[ 
c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (Sqrt[2]*Sqrt[a]*(3*A - 5*C)*ArcT 
anh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + 
d*x]])])/d)/(4*a^2) - ((A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + 
a*Sec[c + d*x])^(3/2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(363\) vs. \(2(152)=304\).

Time = 3.54 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.97

method result size
default \(\frac {\sqrt {2}\, \left (-\frac {C \left (4 \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\cot \left (\frac {d x}{2}+\frac {c}{2}\right )-\csc \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}\right )+4 \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\cot \left (\frac {d x}{2}+\frac {c}{2}\right )-\csc \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}\right )+5 \ln \left (-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\csc \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-5 \ln \left (-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\csc \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}}\, a}+\frac {A \left (3 \ln \left (-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\csc \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \ln \left (-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\csc \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}}\, a}\right )}{4}\) \(364\)

Input:

int((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/4*2^(1/2)*(-C/d/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/(a/(2*cos(1/2*d*x+1/2*c 
)^2-1)*cos(1/2*d*x+1/2*c)^2)^(1/2)/a*(4*2^(1/2)*cos(1/2*d*x+1/2*c)*arctanh 
(1/2*2^(1/2)*(cot(1/2*d*x+1/2*c)-csc(1/2*d*x+1/2*c)+1))+4*2^(1/2)*cos(1/2* 
d*x+1/2*c)*arctanh(1/2*2^(1/2)*(cot(1/2*d*x+1/2*c)-csc(1/2*d*x+1/2*c)-1))+ 
5*ln(-cot(1/2*d*x+1/2*c)+csc(1/2*d*x+1/2*c)+1)*cos(1/2*d*x+1/2*c)-5*ln(-co 
t(1/2*d*x+1/2*c)+csc(1/2*d*x+1/2*c)-1)*cos(1/2*d*x+1/2*c)+tan(1/2*d*x+1/2* 
c))+A/d/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/(a/(2*cos(1/2*d*x+1/2*c)^2-1)*cos 
(1/2*d*x+1/2*c)^2)^(1/2)/a*(3*ln(-cot(1/2*d*x+1/2*c)+csc(1/2*d*x+1/2*c)+1) 
*cos(1/2*d*x+1/2*c)-3*ln(-cot(1/2*d*x+1/2*c)+csc(1/2*d*x+1/2*c)-1)*cos(1/2 
*d*x+1/2*c)-tan(1/2*d*x+1/2*c)))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 608, normalized size of antiderivative = 3.29 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, al 
gorithm="fricas")
 

Output:

[-1/8*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 
3*A - 5*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x 
+ c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(A + C)*sqrt((a*cos 
(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 4*(C*cos(d* 
x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + 
 c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + 
c)^2)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt( 
2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*s 
qrt(-a)*arctan(1/2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c) + a)) + 2*(A + C)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 4*(C*c 
os(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*c 
os(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x 
+ c)^2 - a*cos(d*x + c) - 2*a)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + 
 c) + a^2*d)]
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/((a*(sec(c + d*x) + 1))**(3/2)*sqrt(cos(c 
 + d*x))), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3153 vs. \(2 (152) = 304\).

Time = 0.31 (sec) , antiderivative size = 3153, normalized size of antiderivative = 17.04 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, al 
gorithm="maxima")
 

Output:

1/4*((3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2 
*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2 
*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*co 
s(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2* 
sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2 
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2* 
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - lo 
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) 
 + 1))*sin(d*x + c)^2 + 2*(6*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1 
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos( 
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) 
- 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 
1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 
 2*c) + 4*(3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c) 
^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 
4*(3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d...
 

Giac [A] (verification not implemented)

Time = 165.85 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.37 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\frac {\sqrt {2} {\left (3 \, A \sqrt {a} - 5 \, C \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {8 \, C \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {8 \, C \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {2 \, {\left (\sqrt {2} A a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + \sqrt {2} C a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}}}{8 \, d} \] Input:

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, al 
gorithm="giac")
 

Output:

-1/8*(sqrt(2)*(3*A*sqrt(a) - 5*C*sqrt(a))*log((sqrt(a)*tan(1/2*d*x + 1/2*c 
) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(a^2*sgn(cos(d*x + c))) - 8*C*l 
og(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)) 
^2 - a*(2*sqrt(2) + 3)))/(a^(3/2)*sgn(cos(d*x + c))) + 8*C*log(abs((sqrt(a 
)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt 
(2) - 3)))/(a^(3/2)*sgn(cos(d*x + c))) + 2*(sqrt(2)*A*a*sgn(cos(d*x + c)) 
+ sqrt(2)*C*a*sgn(cos(d*x + c)))*sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/ 
2*d*x + 1/2*c)/a^3)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)) 
,x)
 

Output:

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)) 
, x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) a \right )}{a^{2}} \] Input:

int((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**2)/ 
(cos(c + d*x)*sec(c + d*x)**2 + 2*cos(c + d*x)*sec(c + d*x) + cos(c + d*x) 
),x)*c + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)*sec 
(c + d*x)**2 + 2*cos(c + d*x)*sec(c + d*x) + cos(c + d*x)),x)*a))/a**2