\(\int \sec ^2(c+d x) (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\) [93]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 172 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 (4 A+3 C) \text {arctanh}(\sin (c+d x))}{4 d}+\frac {a^2 (4 A+3 C) \tan (c+d x)}{3 d}+\frac {a^2 (4 A+3 C) \sec (c+d x) \tan (c+d x)}{12 d}+\frac {(10 A+3 C) (a+a \sec (c+d x))^2 \tan (c+d x)}{30 d}+\frac {C \sec ^2(c+d x) (a+a \sec (c+d x))^2 \tan (c+d x)}{5 d}+\frac {C (a+a \sec (c+d x))^3 \tan (c+d x)}{10 a d} \] Output:

1/4*a^2*(4*A+3*C)*arctanh(sin(d*x+c))/d+1/3*a^2*(4*A+3*C)*tan(d*x+c)/d+1/1 
2*a^2*(4*A+3*C)*sec(d*x+c)*tan(d*x+c)/d+1/30*(10*A+3*C)*(a+a*sec(d*x+c))^2 
*tan(d*x+c)/d+1/5*C*sec(d*x+c)^2*(a+a*sec(d*x+c))^2*tan(d*x+c)/d+1/10*C*(a 
+a*sec(d*x+c))^3*tan(d*x+c)/a/d
 

Mathematica [A] (verified)

Time = 1.46 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.55 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 \left (15 (4 A+3 C) \text {arctanh}(\sin (c+d x))+\left (100 A+72 C+15 (4 A+3 C) \sec (c+d x)+4 (5 A+9 C) \sec ^2(c+d x)+30 C \sec ^3(c+d x)+12 C \sec ^4(c+d x)\right ) \tan (c+d x)\right )}{60 d} \] Input:

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]
 

Output:

(a^2*(15*(4*A + 3*C)*ArcTanh[Sin[c + d*x]] + (100*A + 72*C + 15*(4*A + 3*C 
)*Sec[c + d*x] + 4*(5*A + 9*C)*Sec[c + d*x]^2 + 30*C*Sec[c + d*x]^3 + 12*C 
*Sec[c + d*x]^4)*Tan[c + d*x]))/(60*d)
 

Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.05, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 4577, 3042, 4498, 27, 3042, 4489, 3042, 4275, 3042, 4254, 24, 4534, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a \sec (c+d x)+a)^2 \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4577

\(\displaystyle \frac {\int \sec ^2(c+d x) (\sec (c+d x) a+a)^2 (a (5 A+2 C)+2 a C \sec (c+d x))dx}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a (5 A+2 C)+2 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\frac {\int 2 \sec (c+d x) (\sec (c+d x) a+a)^2 \left (3 C a^2+(10 A+3 C) \sec (c+d x) a^2\right )dx}{4 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \sec (c+d x) (\sec (c+d x) a+a)^2 \left (3 C a^2+(10 A+3 C) \sec (c+d x) a^2\right )dx}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (3 C a^2+(10 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \int \sec (c+d x) (\sec (c+d x) a+a)^2dx+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2dx+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4275

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (2 a^2 \int \sec ^2(c+d x)dx+\int \sec (c+d x) \left (\sec ^2(c+d x) a^2+a^2\right )dx\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (2 a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx-\frac {2 a^2 \int 1d(-\tan (c+d x))}{d}\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+\frac {2 a^2 \tan (c+d x)}{d}\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (\frac {3}{2} a^2 \int \sec (c+d x)dx+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (\frac {3}{2} a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\frac {5}{3} a^2 (4 A+3 C) \left (\frac {3 a^2 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(10 A+3 C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 d}}{2 a}+\frac {C \tan (c+d x) (a \sec (c+d x)+a)^3}{2 d}}{5 a}+\frac {C \tan (c+d x) \sec ^2(c+d x) (a \sec (c+d x)+a)^2}{5 d}\)

Input:

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]
 

Output:

(C*Sec[c + d*x]^2*(a + a*Sec[c + d*x])^2*Tan[c + d*x])/(5*d) + ((C*(a + a* 
Sec[c + d*x])^3*Tan[c + d*x])/(2*d) + (((10*A + 3*C)*(a^2 + a^2*Sec[c + d* 
x])^2*Tan[c + d*x])/(3*d) + (5*a^2*(4*A + 3*C)*((3*a^2*ArcTanh[Sin[c + d*x 
]])/(2*d) + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d) 
))/3)/(2*a))/(5*a)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4577
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C) 
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1))), 
x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n 
*Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
 b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && 
!LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.06

method result size
parts \(-\frac {\left (a^{2} A +C \,a^{2}\right ) \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}-\frac {C \,a^{2} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}+\frac {a^{2} A \tan \left (d x +c \right )}{d}+\frac {2 C \,a^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {a^{2} A \tan \left (d x +c \right ) \sec \left (d x +c \right )}{d}+\frac {a^{2} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(182\)
derivativedivides \(\frac {a^{2} A \tan \left (d x +c \right )-C \,a^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+2 a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 C \,a^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-a^{2} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-C \,a^{2} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}\) \(186\)
default \(\frac {a^{2} A \tan \left (d x +c \right )-C \,a^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+2 a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 C \,a^{2} \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-a^{2} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-C \,a^{2} \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}\) \(186\)
norman \(\frac {\frac {7 a^{2} \left (4 A +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {a^{2} \left (4 A +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{2 d}-\frac {a^{2} \left (12 A +13 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d}-\frac {8 a^{2} \left (35 A +27 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{15 d}+\frac {a^{2} \left (52 A +27 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{5}}-\frac {a^{2} \left (4 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{4 d}+\frac {a^{2} \left (4 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d}\) \(201\)
parallelrisch \(\frac {14 \left (-\frac {15 \left (\frac {\cos \left (5 d x +5 c \right )}{10}+\frac {\cos \left (3 d x +3 c \right )}{2}+\cos \left (d x +c \right )\right ) \left (A +\frac {3 C}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{7}+\frac {15 \left (\frac {\cos \left (5 d x +5 c \right )}{10}+\frac {\cos \left (3 d x +3 c \right )}{2}+\cos \left (d x +c \right )\right ) \left (A +\frac {3 C}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{7}+\left (\frac {6 A}{7}+\frac {3 C}{2}\right ) \sin \left (2 d x +2 c \right )+\left (\frac {19 A}{14}+\frac {9 C}{7}\right ) \sin \left (3 d x +3 c \right )+\left (\frac {3 A}{7}+\frac {9 C}{28}\right ) \sin \left (4 d x +4 c \right )+\left (\frac {5 A}{14}+\frac {9 C}{35}\right ) \sin \left (5 d x +5 c \right )+\sin \left (d x +c \right ) \left (A +\frac {12 C}{7}\right )\right ) a^{2}}{3 d \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right )}\) \(217\)
risch \(-\frac {i a^{2} \left (60 A \,{\mathrm e}^{9 i \left (d x +c \right )}+45 C \,{\mathrm e}^{9 i \left (d x +c \right )}-60 A \,{\mathrm e}^{8 i \left (d x +c \right )}+120 A \,{\mathrm e}^{7 i \left (d x +c \right )}+210 C \,{\mathrm e}^{7 i \left (d x +c \right )}-360 A \,{\mathrm e}^{6 i \left (d x +c \right )}-120 C \,{\mathrm e}^{6 i \left (d x +c \right )}-640 A \,{\mathrm e}^{4 i \left (d x +c \right )}-600 C \,{\mathrm e}^{4 i \left (d x +c \right )}-120 A \,{\mathrm e}^{3 i \left (d x +c \right )}-210 C \,{\mathrm e}^{3 i \left (d x +c \right )}-440 A \,{\mathrm e}^{2 i \left (d x +c \right )}-360 C \,{\mathrm e}^{2 i \left (d x +c \right )}-60 A \,{\mathrm e}^{i \left (d x +c \right )}-45 C \,{\mathrm e}^{i \left (d x +c \right )}-100 A -72 C \right )}{30 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{5}}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{d}-\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{4 d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{d}+\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{4 d}\) \(298\)

Input:

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x,method=_RETURNVER 
BOSE)
 

Output:

-(A*a^2+C*a^2)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)-C*a^2/d*(-8/15-1/5*sec 
(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c)+a^2*A/d*tan(d*x+c)+2*C*a^2/d*(-(-1 
/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c)))+ 
a^2*A/d*tan(d*x+c)*sec(d*x+c)+a^2*A/d*ln(sec(d*x+c)+tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.94 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {15 \, {\left (4 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (4 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, {\left (25 \, A + 18 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} + 15 \, {\left (4 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 4 \, {\left (5 \, A + 9 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 30 \, C a^{2} \cos \left (d x + c\right ) + 12 \, C a^{2}\right )} \sin \left (d x + c\right )}{120 \, d \cos \left (d x + c\right )^{5}} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm= 
"fricas")
 

Output:

1/120*(15*(4*A + 3*C)*a^2*cos(d*x + c)^5*log(sin(d*x + c) + 1) - 15*(4*A + 
 3*C)*a^2*cos(d*x + c)^5*log(-sin(d*x + c) + 1) + 2*(4*(25*A + 18*C)*a^2*c 
os(d*x + c)^4 + 15*(4*A + 3*C)*a^2*cos(d*x + c)^3 + 4*(5*A + 9*C)*a^2*cos( 
d*x + c)^2 + 30*C*a^2*cos(d*x + c) + 12*C*a^2)*sin(d*x + c))/(d*cos(d*x + 
c)^5)
 

Sympy [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=a^{2} \left (\int A \sec ^{2}{\left (c + d x \right )}\, dx + \int 2 A \sec ^{3}{\left (c + d x \right )}\, dx + \int A \sec ^{4}{\left (c + d x \right )}\, dx + \int C \sec ^{4}{\left (c + d x \right )}\, dx + \int 2 C \sec ^{5}{\left (c + d x \right )}\, dx + \int C \sec ^{6}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)
 

Output:

a**2*(Integral(A*sec(c + d*x)**2, x) + Integral(2*A*sec(c + d*x)**3, x) + 
Integral(A*sec(c + d*x)**4, x) + Integral(C*sec(c + d*x)**4, x) + Integral 
(2*C*sec(c + d*x)**5, x) + Integral(C*sec(c + d*x)**6, x))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.27 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {40 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{2} + 8 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} C a^{2} + 40 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{2} - 15 \, C a^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 60 \, A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 120 \, A a^{2} \tan \left (d x + c\right )}{120 \, d} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm= 
"maxima")
 

Output:

1/120*(40*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^2 + 8*(3*tan(d*x + c)^5 + 
10*tan(d*x + c)^3 + 15*tan(d*x + c))*C*a^2 + 40*(tan(d*x + c)^3 + 3*tan(d* 
x + c))*C*a^2 - 15*C*a^2*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + 
 c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + 
c) - 1)) - 60*A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c 
) + 1) + log(sin(d*x + c) - 1)) + 120*A*a^2*tan(d*x + c))/d
 

Giac [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.43 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {15 \, {\left (4 \, A a^{2} + 3 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, {\left (4 \, A a^{2} + 3 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (60 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 45 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 280 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 210 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 560 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 432 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 520 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 270 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 180 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 195 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{5}}}{60 \, d} \] Input:

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm= 
"giac")
 

Output:

1/60*(15*(4*A*a^2 + 3*C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 15*(4*A* 
a^2 + 3*C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(60*A*a^2*tan(1/2*d* 
x + 1/2*c)^9 + 45*C*a^2*tan(1/2*d*x + 1/2*c)^9 - 280*A*a^2*tan(1/2*d*x + 1 
/2*c)^7 - 210*C*a^2*tan(1/2*d*x + 1/2*c)^7 + 560*A*a^2*tan(1/2*d*x + 1/2*c 
)^5 + 432*C*a^2*tan(1/2*d*x + 1/2*c)^5 - 520*A*a^2*tan(1/2*d*x + 1/2*c)^3 
- 270*C*a^2*tan(1/2*d*x + 1/2*c)^3 + 180*A*a^2*tan(1/2*d*x + 1/2*c) + 195* 
C*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^5)/d
 

Mupad [B] (verification not implemented)

Time = 14.08 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.29 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (A+\frac {3\,C}{4}\right )}{d}-\frac {\left (2\,A\,a^2+\frac {3\,C\,a^2}{2}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (-\frac {28\,A\,a^2}{3}-7\,C\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {56\,A\,a^2}{3}+\frac {72\,C\,a^2}{5}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {52\,A\,a^2}{3}-9\,C\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (6\,A\,a^2+\frac {13\,C\,a^2}{2}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \] Input:

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2)/cos(c + d*x)^2,x)
 

Output:

(2*a^2*atanh(tan(c/2 + (d*x)/2))*(A + (3*C)/4))/d - (tan(c/2 + (d*x)/2)*(6 
*A*a^2 + (13*C*a^2)/2) + tan(c/2 + (d*x)/2)^9*(2*A*a^2 + (3*C*a^2)/2) - ta 
n(c/2 + (d*x)/2)^7*((28*A*a^2)/3 + 7*C*a^2) - tan(c/2 + (d*x)/2)^3*((52*A* 
a^2)/3 + 9*C*a^2) + tan(c/2 + (d*x)/2)^5*((56*A*a^2)/3 + (72*C*a^2)/5))/(d 
*(5*tan(c/2 + (d*x)/2)^2 - 10*tan(c/2 + (d*x)/2)^4 + 10*tan(c/2 + (d*x)/2) 
^6 - 5*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 - 1))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.80 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x)
 

Output:

(a**2*( - 60*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a - 45 
*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*c + 120*cos(c + d* 
x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a + 90*cos(c + d*x)*log(tan(( 
c + d*x)/2) - 1)*sin(c + d*x)**2*c - 60*cos(c + d*x)*log(tan((c + d*x)/2) 
- 1)*a - 45*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*c + 60*cos(c + d*x)*log 
(tan((c + d*x)/2) + 1)*sin(c + d*x)**4*a + 45*cos(c + d*x)*log(tan((c + d* 
x)/2) + 1)*sin(c + d*x)**4*c - 120*cos(c + d*x)*log(tan((c + d*x)/2) + 1)* 
sin(c + d*x)**2*a - 90*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x) 
**2*c + 60*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a + 45*cos(c + d*x)*log( 
tan((c + d*x)/2) + 1)*c - 60*cos(c + d*x)*sin(c + d*x)**3*a - 45*cos(c + d 
*x)*sin(c + d*x)**3*c + 60*cos(c + d*x)*sin(c + d*x)*a + 75*cos(c + d*x)*s 
in(c + d*x)*c + 100*sin(c + d*x)**5*a + 72*sin(c + d*x)**5*c - 220*sin(c + 
 d*x)**3*a - 180*sin(c + d*x)**3*c + 120*sin(c + d*x)*a + 120*sin(c + d*x) 
*c))/(60*cos(c + d*x)*d*(sin(c + d*x)**4 - 2*sin(c + d*x)**2 + 1))