\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [1179]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 111 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 C \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-6/5*C*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*B*InverseJacobiAM(1/2*d 
*x+1/2*c,2^(1/2))/d+2/5*C*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/3*B*sin(d*x+c)/d 
/cos(d*x+c)^(3/2)+6/5*C*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.86 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-18 C \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 B \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+10 B \sin (c+d x)+9 C \sin (2 (c+d x))+6 C \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]
 

Output:

(-18*C*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*B*Cos[c + d*x]^(3 
/2)*EllipticF[(c + d*x)/2, 2] + 10*B*Sin[c + d*x] + 9*C*Sin[2*(c + d*x)] + 
 6*C*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.367, Rules used = {3042, 4552, 3042, 3227, 3042, 3116, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sec (c+d x)+C \sec (c+d x)^2}{\cos (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4552

\(\displaystyle \int \frac {B \cos (c+d x)+C}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle B \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+C \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+C \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {3}{5} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {3}{5} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle B \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

Input:

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]
 

Output:

B*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x 
]^(3/2))) + C*((2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (3*((-2*Ellipti 
cE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/5)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 4552
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*( 
x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b^2   Int[(b*Cos 
[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ 
[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(501\) vs. \(2(98)=196\).

Time = 4.24 (sec) , antiderivative size = 502, normalized size of antiderivative = 4.52

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 B \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {2 C \left (24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+12 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(502\)

Input:

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE 
)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*(-1/6*cos( 
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1 
/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2/5*C/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d* 
x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2*d 
*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/ 
2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*s 
in(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.69 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} B \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} C \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} C \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, C \cos \left (d x + c\right )^{2} + 5 \, B \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fri 
cas")
 

Output:

1/15*(-5*I*sqrt(2)*B*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*cos(d*x + c)^3*weierstrassPInverse(-4, 
 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*C*cos(d*x + c)^3*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
+ 9*I*sqrt(2)*C*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*C*cos(d*x + c)^2 + 5*B*cos(d 
*x + c) + 3*C)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2),x)
 

Output:

Integral((B + C*sec(c + d*x))*sec(c + d*x)/cos(c + d*x)**(3/2), x)
 

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="max 
ima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="gia 
c")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 13.97 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,B\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/cos(c + d*x)^(3/2),x)
 

Output:

(2*B*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c 
+ d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*sin(c + d*x)*hypergeom([-5/4, 
1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2 
))
 

Reduce [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2}}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2}}d x \right ) b \] Input:

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x))*sec(c + d*x)**2)/cos(c + d*x)**2,x)*c + int((sqrt( 
cos(c + d*x))*sec(c + d*x))/cos(c + d*x)**2,x)*b