\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1189]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 106 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (3 A+5 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (A+B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

2/5*a*(3*A+5*B+5*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(A+B+3*C 
)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/3*a*(A+B)*cos(d*x+c)^(1/2)*si 
n(d*x+c)/d+2/5*a*A*cos(d*x+c)^(3/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.49 (sec) , antiderivative size = 405, normalized size of antiderivative = 3.82 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-6 (3 A+5 (B+C)) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sec (c) \sin (d x+\arctan (\tan (c)))+\left (9 (3 A+5 (B+C)) \cos (c-d x-\arctan (\tan (c))) \csc (c) \sec (c)+9 A \cos (c+d x+\arctan (\tan (c))) \csc (c) \sec (c)+15 B \cos (c+d x+\arctan (\tan (c))) \csc (c) \sec (c)+15 C \cos (c+d x+\arctan (\tan (c))) \csc (c) \sec (c)-36 A \cos (c+d x) \cot (c) \sqrt {\sec ^2(c)}-60 B \cos (c+d x) \cot (c) \sqrt {\sec ^2(c)}-60 C \cos (c+d x) \cot (c) \sqrt {\sec ^2(c)}-20 (A+B+3 C) \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sqrt {\sec ^2(c)} \sec (d x-\arctan (\cot (c))) \sin (c)+20 A \cos (c+d x) \sqrt {\sec ^2(c)} \sin (c+d x)+20 B \cos (c+d x) \sqrt {\sec ^2(c)} \sin (c+d x)+12 A \cos ^2(c+d x) \sqrt {\sec ^2(c)} \sin (c+d x)\right ) \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{60 d \sqrt {\cos (c+d x)} \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C* 
Sec[c + d*x]^2),x]
 

Output:

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(-6*(3*A + 5*(B + C))*Hypergeomet 
ricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sec[c]*Sin[d*x + 
ArcTan[Tan[c]]] + (9*(3*A + 5*(B + C))*Cos[c - d*x - ArcTan[Tan[c]]]*Csc[c 
]*Sec[c] + 9*A*Cos[c + d*x + ArcTan[Tan[c]]]*Csc[c]*Sec[c] + 15*B*Cos[c + 
d*x + ArcTan[Tan[c]]]*Csc[c]*Sec[c] + 15*C*Cos[c + d*x + ArcTan[Tan[c]]]*C 
sc[c]*Sec[c] - 36*A*Cos[c + d*x]*Cot[c]*Sqrt[Sec[c]^2] - 60*B*Cos[c + d*x] 
*Cot[c]*Sqrt[Sec[c]^2] - 60*C*Cos[c + d*x]*Cot[c]*Sqrt[Sec[c]^2] - 20*(A + 
 B + 3*C)*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hy 
pergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Sec[c 
]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + 20*A*Cos[c + d*x]*Sqrt[Sec[c]^2]*S 
in[c + d*x] + 20*B*Cos[c + d*x]*Sqrt[Sec[c]^2]*Sin[c + d*x] + 12*A*Cos[c + 
 d*x]^2*Sqrt[Sec[c]^2]*Sin[c + d*x])*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/( 
60*d*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2])
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.06, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {3042, 4600, 3042, 3512, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{5/2} (a \sec (c+d x)+a) \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {(a \cos (c+d x)+a) \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3512

\(\displaystyle \frac {2}{5} \int \frac {5 a (A+B) \cos ^2(c+d x)+a (3 A+5 (B+C)) \cos (c+d x)+5 a C}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 a (A+B) \cos ^2(c+d x)+a (3 A+5 (B+C)) \cos (c+d x)+5 a C}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 a (A+B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (3 A+5 (B+C)) \sin \left (c+d x+\frac {\pi }{2}\right )+5 a C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {5 a (A+B+3 C)+3 a (3 A+5 (B+C)) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 a (A+B+3 C)+3 a (3 A+5 (B+C)) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 a (A+B+3 C)+3 a (3 A+5 (B+C)) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+B+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a (3 A+5 (B+C)) \int \sqrt {\cos (c+d x)}dx\right )+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (3 A+5 (B+C)) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a (3 A+5 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {10 a (A+B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (3 A+5 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {10 a (A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

Input:

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2),x]
 

Output:

(2*a*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (((6*a*(3*A + 5*(B + C))*E 
llipticE[(c + d*x)/2, 2])/d + (10*a*(A + B + 3*C)*EllipticF[(c + d*x)/2, 2 
])/d)/3 + (10*a*(A + B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3512
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si 
n[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3))   Int[(a + b*Si 
n[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + 
A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 
0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(446\) vs. \(2(98)=196\).

Time = 29.86 (sec) , antiderivative size = 447, normalized size of antiderivative = 4.22

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (-24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (44 A +20 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-16 A -10 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(447\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-24*A*cos 
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(44*A+20*B)*sin(1/2*d*x+1/2*c)^4*cos( 
1/2*d*x+1/2*c)+(-16*A-10*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos( 
1/2*d*x+1/2*c),2^(1/2))-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*B*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c) 
,2^(1/2))-15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/ 
2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15 
*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.63 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {-5 i \, \sqrt {2} {\left (A + B + 3 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (A + B + 3 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B + 5 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B + 5 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, A a \cos \left (d x + c\right ) + 5 \, {\left (A + B\right )} a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*(A + B + 3*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + 5*I*sqrt(2)*(A + B + 3*C)*a*weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*(3*A + 5*B + 5*C)*a*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
 - 3*I*sqrt(2)*(3*A + 5*B + 5*C)*a*weierstrassZeta(-4, 0, weierstrassPInve 
rse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*A*a*cos(d*x + c) + 5*(A 
+ B)*a)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)* 
*2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos 
(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos 
(d*x + c)^(5/2), x)
 

Mupad [B] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.53 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c 
+ d*x)^2),x)
 

Output:

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*B*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2 
)))/(3*d) + (2*B*a*ellipticE(c/2 + (d*x)/2, 2))/d + (2*C*a*ellipticE(c/2 + 
 (d*x)/2, 2))/d + (2*C*a*ellipticF(c/2 + (d*x)/2, 2))/d - (2*A*a*cos(c + d 
*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*( 
sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*c + int(sqrt( 
cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**2,x)*b + int(sqrt(cos(c + d*x) 
)*cos(c + d*x)**2*sec(c + d*x)**2,x)*c + int(sqrt(cos(c + d*x))*cos(c + d* 
x)**2*sec(c + d*x),x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d 
*x),x)*b + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*a)