\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1197]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 170 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {4 a^2 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (A+2 B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (7 A+5 B-15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \] Output:

4/5*a^2*(4*A+5*B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(A+2*B+3 
*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/15*a^2*(7*A+5*B-15*C)*cos(d 
*x+c)^(1/2)*sin(d*x+c)/d+2*C*(a+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(1 
/2)+2/5*(A-5*C)*cos(d*x+c)^(1/2)*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.95 (sec) , antiderivative size = 1356, normalized size of antiderivative = 7.98 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + 
C*Sec[c + d*x]^2),x]
 

Output:

(Cos[c + d*x]^(9/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec 
[c + d*x] + C*Sec[c + d*x]^2)*(-1/10*((8*A + 10*B - 5*C + 8*A*Cos[2*c] + 1 
0*B*Cos[2*c] + 5*C*Cos[2*c])*Csc[c]*Sec[c])/d + ((2*A + B)*Cos[d*x]*Sin[c] 
)/(3*d) + (A*Cos[2*d*x]*Sin[2*c])/(10*d) + ((2*A + B)*Cos[c]*Sin[d*x])/(3* 
d) + (C*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (A*Cos[2*c]*Sin[2*d*x])/(10*d))) 
/(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]) - (2*A*Cos[c + d*x]^4*C 
sc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Se 
c[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + 
d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt 
[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
- ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]) 
*Sqrt[1 + Cot[c]^2]) - (4*B*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 
1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[ 
c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c 
]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*S 
in[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 
2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (2*C*Co 
s[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[ 
Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x 
] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcT...
 

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.06, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.395, Rules used = {3042, 4600, 3042, 3522, 27, 3042, 3455, 27, 3042, 3447, 3042, 3502, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{5/2} (a \sec (c+d x)+a)^2 \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^2 (a (B+4 C)+a (A-5 C) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^2 (a (B+4 C)+a (A-5 C) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a (B+4 C)+a (A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {2}{5} \int \frac {(\cos (c+d x) a+a) \left ((A+5 B+15 C) a^2+(7 A+5 B-15 C) \cos (c+d x) a^2\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{5} \int \frac {(\cos (c+d x) a+a) \left ((A+5 B+15 C) a^2+(7 A+5 B-15 C) \cos (c+d x) a^2\right )}{\sqrt {\cos (c+d x)}}dx+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((A+5 B+15 C) a^2+(7 A+5 B-15 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{5} \int \frac {(7 A+5 B-15 C) \cos ^2(c+d x) a^3+(A+5 B+15 C) a^3+\left ((7 A+5 B-15 C) a^3+(A+5 B+15 C) a^3\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \int \frac {(7 A+5 B-15 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^3+(A+5 B+15 C) a^3+\left ((7 A+5 B-15 C) a^3+(A+5 B+15 C) a^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {5 (A+2 B+3 C) a^3+3 (4 A+5 B) \cos (c+d x) a^3}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \frac {5 (A+2 B+3 C) a^3+3 (4 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^3 (A+2 B+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^3 (4 A+5 B) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^3 (A+2 B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^3 (4 A+5 B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (5 a^3 (A+2 B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2 a^3 (7 A+5 B-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2}{3} \left (\frac {10 a^3 (A+2 B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^3 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}}{a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[ 
c + d*x]^2),x]
 

Output:

(2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + ((2*(A 
- 5*C)*Sqrt[Cos[c + d*x]]*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(5*d) + ( 
(2*((6*a^3*(4*A + 5*B)*EllipticE[(c + d*x)/2, 2])/d + (10*a^3*(A + 2*B + 3 
*C)*EllipticF[(c + d*x)/2, 2])/d))/3 + (2*a^3*(7*A + 5*B - 15*C)*Sqrt[Cos[ 
c + d*x]]*Sin[c + d*x])/(3*d))/5)/a
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(594\) vs. \(2(159)=318\).

Time = 52.60 (sec) , antiderivative size = 595, normalized size of antiderivative = 3.50

method result size
default \(-\frac {4 a^{2} \left (-12 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (16 A +5 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (13 A +5 B +15 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+10 B \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 B \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(595\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, 
method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-4/15*a^2*(-12*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin( 
1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(16*A+5*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-(-2*si 
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(13*A+5*B+15*C)*sin(1/2*d*x 
+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*B*(-2*sin(1/2*d*x+1/2*c 
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*B*(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+15*C*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos 
(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1 
/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2* 
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.36 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (A + 2 \, B + 3 \, C\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (A + 2 \, B + 3 \, C\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (4 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (4 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, A a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + 15 \, C a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="fricas")
 

Output:

-2/15*(5*I*sqrt(2)*(A + 2*B + 3*C)*a^2*cos(d*x + c)*weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(A + 2*B + 3*C)*a^2*cos( 
d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*s 
qrt(2)*(4*A + 5*B)*a^2*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(4*A + 5*B)*a^2* 
cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c))) - (3*A*a^2*cos(d*x + c)^2 + 5*(2*A + B)*a^2*cos(d*x + 
 c) + 15*C*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)+C*sec(d*x+ 
c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*c 
os(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*c 
os(d*x + c)^(5/2), x)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 14.25 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.39 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,a^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,B\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^2*(A + B/cos(c + d*x) + C/cos( 
c + d*x)^2),x)
 

Output:

(2*A*a^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x) 
/2, 2))/3))/d + (2*B*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/ 
2 + (d*x)/2, 2) + 4*ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a^2*ellipti 
cE(c/2 + (d*x)/2, 2))/d + (2*C*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*C*a 
^2*ellipticF(c/2 + (d*x)/2, 2))/d - (2*A*a^2*cos(c + d*x)^(7/2)*sin(c + d* 
x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2 
)) + (2*C*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d 
*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) b +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) c +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

a**2*(int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**4,x)*c + int(sq 
rt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*b + 2*int(sqrt(cos(c + 
 d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x))*cos(c 
 + d*x)**2*sec(c + d*x)**2,x)*a + 2*int(sqrt(cos(c + d*x))*cos(c + d*x)**2 
*sec(c + d*x)**2,x)*b + int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x 
)**2,x)*c + 2*int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x),x)*a + i 
nt(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x),x)*b + int(sqrt(cos(c + 
 d*x))*cos(c + d*x)**2,x)*a)