\(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1199]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 174 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {4 a^2 (5 B+4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (3 A+2 B+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (15 A+25 B+17 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 B+4 C) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

-4/5*a^2*(5*B+4*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(3*A+2* 
B+C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/15*a^2*(15*A+25*B+17*C)*si 
n(d*x+c)/d/cos(d*x+c)^(1/2)+2/5*C*(a+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+ 
c)^(5/2)+2/15*(5*B+4*C)*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.77 (sec) , antiderivative size = 1360, normalized size of antiderivative = 7.82 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + 
C*Sec[c + d*x]^2),x]
 

Output:

(Cos[c + d*x]^(9/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec 
[c + d*x] + C*Sec[c + d*x]^2)*(-1/10*((-5*A - 20*B - 16*C + 5*A*Cos[2*c])* 
Csc[c]*Sec[c])/d + (C*Sec[c]*Sec[c + d*x]^3*Sin[d*x])/(5*d) + (Sec[c]*Sec[ 
c + d*x]^2*(3*C*Sin[c] + 5*B*Sin[d*x] + 10*C*Sin[d*x]))/(15*d) + (Sec[c]*S 
ec[c + d*x]*(5*B*Sin[c] + 10*C*Sin[c] + 15*A*Sin[d*x] + 30*B*Sin[d*x] + 24 
*C*Sin[d*x]))/(15*d)))/(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]) - 
 (2*A*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - 
 ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec 
[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - 
 ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c] 
]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + 
 A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*B*Cos[c + d*x]^4*Csc[c]*Hype 
rgeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d 
*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Se 
c[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
+ Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[C 
ot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + 
Cot[c]^2]) - (2*C*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4 
}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^ 
2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqr...
 

Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.06, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.395, Rules used = {3042, 4600, 3042, 3522, 27, 3042, 3454, 27, 3042, 3447, 3042, 3500, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2 \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^2 (a (5 B+4 C)+a (5 A-C) \cos (c+d x))}{2 \cos ^{\frac {5}{2}}(c+d x)}dx}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^2 (a (5 B+4 C)+a (5 A-C) \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)}dx}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a (5 B+4 C)+a (5 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {2}{3} \int \frac {(\cos (c+d x) a+a) \left ((15 A+25 B+17 C) a^2+(15 A-5 B-7 C) \cos (c+d x) a^2\right )}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {(\cos (c+d x) a+a) \left ((15 A+25 B+17 C) a^2+(15 A-5 B-7 C) \cos (c+d x) a^2\right )}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((15 A+25 B+17 C) a^2+(15 A-5 B-7 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{3} \int \frac {(15 A-5 B-7 C) \cos ^2(c+d x) a^3+(15 A+25 B+17 C) a^3+\left ((15 A-5 B-7 C) a^3+(15 A+25 B+17 C) a^3\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {(15 A-5 B-7 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^3+(15 A+25 B+17 C) a^3+\left ((15 A-5 B-7 C) a^3+(15 A+25 B+17 C) a^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {1}{3} \left (2 \int \frac {5 a^3 (3 A+2 B+C)-3 a^3 (5 B+4 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (2 \int \frac {5 a^3 (3 A+2 B+C)-3 a^3 (5 B+4 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{3} \left (2 \left (5 a^3 (3 A+2 B+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^3 (5 B+4 C) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (2 \left (5 a^3 (3 A+2 B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^3 (5 B+4 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {1}{3} \left (2 \left (5 a^3 (3 A+2 B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^3 (5 B+4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {1}{3} \left (\frac {2 a^3 (15 A+25 B+17 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \left (\frac {10 a^3 (3 A+2 B+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^3 (5 B+4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 (5 B+4 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[ 
c + d*x]^2),x]
 

Output:

(2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((2*( 
5*B + 4*C)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) 
 + (2*((-6*a^3*(5*B + 4*C)*EllipticE[(c + d*x)/2, 2])/d + (10*a^3*(3*A + 2 
*B + C)*EllipticF[(c + d*x)/2, 2])/d) + (2*a^3*(15*A + 25*B + 17*C)*Sin[c 
+ d*x])/(d*Sqrt[Cos[c + d*x]]))/3)/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(878\) vs. \(2(161)=322\).

Time = 5.62 (sec) , antiderivative size = 879, normalized size of antiderivative = 5.05

method result size
default \(\text {Expression too large to display}\) \(879\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, 
method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(1/4*A*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/ 
2))+1/4*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))+1/4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^ 
2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF 
(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+1/20*C 
/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*si 
n(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d* 
x+1/2*c)^4+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c 
),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x 
+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(1/4*B+1/2*C)*(-1/6*cos(1/2*d*x+1/2*c 
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c) 
^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/ 
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.43 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (3 \, A + 2 \, B + C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (3 \, A + 2 \, B + C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, B + 4 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, B + 4 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, {\left (5 \, A + 10 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (B + 2 \, C\right )} a^{2} \cos \left (d x + c\right ) + 3 \, C a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="fricas")
 

Output:

-2/15*(5*I*sqrt(2)*(3*A + 2*B + C)*a^2*cos(d*x + c)^3*weierstrassPInverse( 
-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(3*A + 2*B + C)*a^2*co 
s(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3 
*I*sqrt(2)*(5*B + 4*C)*a^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*(5*B + 4*C 
)*a^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos 
(d*x + c) - I*sin(d*x + c))) - (3*(5*A + 10*B + 8*C)*a^2*cos(d*x + c)^2 + 
5*(B + 2*C)*a^2*cos(d*x + c) + 3*C*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/( 
d*cos(d*x + c)^3)
 

Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^{2} \left (\int A \sqrt {\cos {\left (c + d x \right )}}\, dx + \int 2 A \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int A \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int 2 B \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int B \sqrt {\cos {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int 2 C \sqrt {\cos {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \sqrt {\cos {\left (c + d x \right )}} \sec ^{4}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)+C*sec(d*x+ 
c)**2),x)
 

Output:

a**2*(Integral(A*sqrt(cos(c + d*x)), x) + Integral(2*A*sqrt(cos(c + d*x))* 
sec(c + d*x), x) + Integral(A*sqrt(cos(c + d*x))*sec(c + d*x)**2, x) + Int 
egral(B*sqrt(cos(c + d*x))*sec(c + d*x), x) + Integral(2*B*sqrt(cos(c + d* 
x))*sec(c + d*x)**2, x) + Integral(B*sqrt(cos(c + d*x))*sec(c + d*x)**3, x 
) + Integral(C*sqrt(cos(c + d*x))*sec(c + d*x)**2, x) + Integral(2*C*sqrt( 
cos(c + d*x))*sec(c + d*x)**3, x) + Integral(C*sqrt(cos(c + d*x))*sec(c + 
d*x)**4, x))
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*s 
qrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*s 
qrt(cos(d*x + c)), x)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 15.91 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.80 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {6\,C\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,C\,a^2\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,C\,a^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^2*(A + B/cos(c + d*x) + C/cos( 
c + d*x)^2),x)
 

Output:

(6*C*a^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 20*C* 
a^2*cos(c + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) 
+ 30*C*a^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + 
 d*x)^2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (2*A*a^2* 
ellipticE(c/2 + (d*x)/2, 2))/d + (4*A*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + 
 (2*B*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*a^2*sin(c + d*x)*hypergeom 
([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2) 
^(1/2)) + (4*B*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2 
))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^2*sin(c + d*x)*h 
ypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c 
 + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) b +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) c +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) b \right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

a**2*(int(sqrt(cos(c + d*x)),x)*a + int(sqrt(cos(c + d*x))*sec(c + d*x)**4 
,x)*c + int(sqrt(cos(c + d*x))*sec(c + d*x)**3,x)*b + 2*int(sqrt(cos(c + d 
*x))*sec(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x))*sec(c + d*x)**2,x)*a + 
2*int(sqrt(cos(c + d*x))*sec(c + d*x)**2,x)*b + int(sqrt(cos(c + d*x))*sec 
(c + d*x)**2,x)*c + 2*int(sqrt(cos(c + d*x))*sec(c + d*x),x)*a + int(sqrt( 
cos(c + d*x))*sec(c + d*x),x)*b)