\(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [1218]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 174 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {3 (7 A-5 B+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {(5 A-5 B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {(5 A-5 B+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {(7 A-5 B+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {(A-B+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \] Output:

3/5*(7*A-5*B+5*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-1/3*(5*A-5*B+3 
*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a/d-1/3*(5*A-5*B+3*C)*cos(d*x+c 
)^(1/2)*sin(d*x+c)/a/d+1/5*(7*A-5*B+5*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/a/d-( 
A-B+C)*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.97 (sec) , antiderivative size = 1705, normalized size of antiderivative = 9.80 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ a*Sec[c + d*x]),x]
 

Output:

(Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d 
*x]^2)*((-4*(5*A - 5*B + 5*C + 16*A*Cos[c] - 10*B*Cos[c] + 10*C*Cos[c])*Cs 
c[c])/(5*d) - (8*(A - B)*Cos[d*x]*Sin[c])/(3*d) + (4*A*Cos[2*d*x]*Sin[2*c] 
)/(5*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] 
+ C*Sin[(d*x)/2]))/d - (8*(A - B)*Cos[c]*Sin[d*x])/(3*d) + (4*A*Cos[2*c]*S 
in[2*d*x])/(5*d)))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + 
 a*Sec[c + d*x])) + (10*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Hyper 
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + 
 B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin 
[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[ 
Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c 
+ d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) - (1 
0*B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2 
}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Se 
c[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]] 
]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Si 
n[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2 
*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) + (2*C*Cos[c/2 + (d*x)/2]^ 
2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - Arc 
Tan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*...
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.90, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 4600, 3042, 3520, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^{5/2} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{a \sec (c+d x)+a}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int -\frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) (a (5 A-5 B+3 C)-a (7 A-5 B+5 C) \cos (c+d x))dx}{a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \cos ^{\frac {3}{2}}(c+d x) (a (5 A-5 B+3 C)-a (7 A-5 B+5 C) \cos (c+d x))dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a (5 A-5 B+3 C)-a (7 A-5 B+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {a (5 A-5 B+3 C) \int \cos ^{\frac {3}{2}}(c+d x)dx-a (7 A-5 B+5 C) \int \cos ^{\frac {5}{2}}(c+d x)dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (5 A-5 B+3 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-a (7 A-5 B+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {a (5 A-5 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A-5 B+5 C) \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (5 A-5 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A-5 B+5 C) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {a (5 A-5 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A-5 B+5 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {a (5 A-5 B+3 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A-5 B+5 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

Input:

Int[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Se 
c[c + d*x]),x]
 

Output:

-(((A - B + C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))) 
- (a*(5*A - 5*B + 3*C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[ 
c + d*x]]*Sin[c + d*x])/(3*d)) - a*(7*A - 5*B + 5*C)*((6*EllipticE[(c + d* 
x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [A] (verified)

Time = 12.62 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.84

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (25 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+63 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-25 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-45 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+45 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-56 A -40 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (-30 A +90 B -30 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (23 A -35 B +15 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(320\)

Input:

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 

Output:

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d* 
x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(25 
*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*A*EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2))-25*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-45*B*EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))+15*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+45*C*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))+48*A*sin(1/2*d*x+1/2*c)^8+(-56*A-40*B)* 
sin(1/2*d*x+1/2*c)^6+(-30*A+90*B-30*C)*sin(1/2*d*x+1/2*c)^4+(23*A-35*B+15* 
C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin 
(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/ 
2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.70 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {2 \, {\left (6 \, A \cos \left (d x + c\right )^{2} - 2 \, {\left (2 \, A - 5 \, B\right )} \cos \left (d x + c\right ) - 25 \, A + 25 \, B - 15 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (-5 i \, A + 5 i \, B - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 5 i \, B - 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (5 i \, A - 5 i \, B + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 5 i \, B + 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-7 i \, A + 5 i \, B - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-7 i \, A + 5 i \, B - 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (7 i \, A - 5 i \, B + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (7 i \, A - 5 i \, B + 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="fricas")
 

Output:

1/30*(2*(6*A*cos(d*x + c)^2 - 2*(2*A - 5*B)*cos(d*x + c) - 25*A + 25*B - 1 
5*C)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2)*(-5*I*A + 5*I*B - 3*I*C) 
*cos(d*x + c) + sqrt(2)*(-5*I*A + 5*I*B - 3*I*C))*weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c)) - 5*(sqrt(2)*(5*I*A - 5*I*B + 3*I*C)*cos 
(d*x + c) + sqrt(2)*(5*I*A - 5*I*B + 3*I*C))*weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(-7*I*A + 5*I*B - 5*I*C)*cos(d*x 
 + c) + sqrt(2)*(-7*I*A + 5*I*B - 5*I*C))*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*(sqrt(2)*(7*I*A - 5* 
I*B + 5*I*C)*cos(d*x + c) + sqrt(2)*(7*I*A - 5*I*B + 5*I*C))*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d 
*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)^(5/2)/(a*se 
c(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)^(5/2)/(a*se 
c(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x)),x)
 

Output:

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right ) a}{a} \] Input:

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x)
 

Output:

(int((sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**2)/(sec(c + d*x) + 
1),x)*c + int((sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x))/(sec(c + d 
*x) + 1),x)*b + int((sqrt(cos(c + d*x))*cos(c + d*x)**2)/(sec(c + d*x) + 1 
),x)*a)/a