\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [1227]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 144 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {(4 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(5 A-2 B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(5 A-2 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \] Output:

(4*A-B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(5*A-2*B-C)*Invers 
eJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^2/d-1/3*(5*A-2*B-C)*cos(d*x+c)^(1/2)*si 
n(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*(A-B+C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a 
+a*cos(d*x+c))^2
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.56 (sec) , antiderivative size = 1392, normalized size of antiderivative = 9.67 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ a*Sec[c + d*x])^2,x]
 

Output:

(20*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^ 
2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sq 
rt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Arc 
Tan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt 
[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) - (8*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2 
]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/ 
2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[ 
1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - 
ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B 
*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x] 
)^2) - (4*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5 
/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + 
 d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqr 
t[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
 - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x] 
)*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4*Sqrt[ 
Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-8*(2*A - B + 2*A* 
Cos[c])*Csc[c])/d - (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*(2*A*Sin[(d*x)/2] - B*S 
in[(d*x)/2]))/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*...
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 4600, 3042, 3520, 27, 3042, 3456, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{(a \sec (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{(a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int -\frac {\sqrt {\cos (c+d x)} (3 a (A-B-C)-a (7 A-B+C) \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} (3 a (A-B-C)-a (7 A-B+C) \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a (A-B-C)-a (7 A-B+C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \frac {a^2 (5 A-2 B-C)-3 a^2 (4 A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {a^2 (5 A-2 B-C)-3 a^2 (4 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {\frac {a^2 (5 A-2 B-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^2 (4 A-B) \int \sqrt {\cos (c+d x)}dx}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a^2 (5 A-2 B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^2 (4 A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {a^2 (5 A-2 B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^2 (4 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\frac {2 a^2 (5 A-2 B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^2 (4 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Se 
c[c + d*x])^2,x]
 

Output:

-1/3*((A - B + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]) 
^2) - (((-6*a^2*(4*A - B)*EllipticE[(c + d*x)/2, 2])/d + (2*a^2*(5*A - 2*B 
 - C)*EllipticF[(c + d*x)/2, 2])/d)/a^2 + (2*(5*A - 2*B - C)*Sqrt[Cos[c + 
d*x]]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])))/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(137)=274\).

Time = 4.59 (sec) , antiderivative size = 509, normalized size of antiderivative = 3.53

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-38 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+15 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B -C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(509\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, 
method=_RETURNVERBOSE)
 

Output:

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*A*cos(1/2* 
d*x+1/2*c)^6+10*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1) 
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*A*cos 
(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1) 
^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^6-4*B 
*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^ 
2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*cos(1/2*d*x+1/2*c)^3* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))-2*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))-38*A*cos(1/2*d*x+1/2*c)^4+20*B*cos(1/2*d*x+1/2*c)^4-2*C*cos(1/2*d*x+1 
/2*c)^4+15*A*cos(1/2*d*x+1/2*c)^2-9*B*cos(1/2*d*x+1/2*c)^2+3*C*cos(1/2*d*x 
+1/2*c)^2-A+B-C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 377, normalized size of antiderivative = 2.62 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (2 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - 2 \, B - C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-4 i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (4 i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="fricas")
 

Output:

-1/6*(2*(3*(2*A - B)*cos(d*x + c) + 5*A - 2*B - C)*sqrt(cos(d*x + c))*sin( 
d*x + c) - (sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-5*I 
*A + 2*I*B + I*C)*cos(d*x + c) + sqrt(2)*(5*I*A - 2*I*B - I*C))*weierstras 
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2)*(-5*I*A + 2*I*B 
 + I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c) + sq 
rt(2)*(-5*I*A + 2*I*B + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I* 
sin(d*x + c)) + 3*(sqrt(2)*(-4*I*A + I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(-4*I 
*A + I*B)*cos(d*x + c) + sqrt(2)*(-4*I*A + I*B))*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(4*I 
*A - I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(4*I*A - I*B)*cos(d*x + c) + sqrt(2)* 
(4*I*A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2 
*d)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \sqrt {\cos {\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c))**2,x)
 

Output:

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) 
+ Integral(B*sqrt(cos(c + d*x))*sec(c + d*x)/(sec(c + d*x)**2 + 2*sec(c + 
d*x) + 1), x) + Integral(C*sqrt(cos(c + d*x))*sec(c + d*x)**2/(sec(c + d*x 
)**2 + 2*sec(c + d*x) + 1), x))/a**2
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*se 
c(d*x + c) + a)^2, x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*se 
c(d*x + c) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x))^2,x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x))^2, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b}{a^{2}} \] Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x)
 

Output:

(int(sqrt(cos(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*a + int( 
(sqrt(cos(c + d*x))*sec(c + d*x)**2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1 
),x)*c + int((sqrt(cos(c + d*x))*sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c 
+ d*x) + 1),x)*b)/a**2