\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\) [1229]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 167 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\frac {(B-4 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(A+2 B-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(B-4 C) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}+\frac {(A+2 B-5 C) \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\cos (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \] Output:

(B-4*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(A+2*B-5*C)*Invers 
eJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^2/d-(B-4*C)*sin(d*x+c)/a^2/d/cos(d*x+c) 
^(1/2)+1/3*(A+2*B-5*C)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)/(1+cos(d*x+c))-1/ 
3*(A-B+C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.66 (sec) , antiderivative size = 1424, normalized size of antiderivative = 8.53 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + 
 a*Sec[c + d*x])^2),x]
 

Output:

(-4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^ 
2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sq 
rt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Arc 
Tan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt 
[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) - (8*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2 
]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/ 
2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[ 
1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - 
ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B 
*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x] 
)^2) + (20*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, { 
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sq 
rt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d* 
x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x 
])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4*Sqrt 
[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((4*(2*C - B*Cos[c] 
 + 2*C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2 
]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (8*Sec[...
 

Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.02, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.349, Rules used = {3042, 4600, 3042, 3520, 27, 3042, 3457, 25, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec (c+d x)^2}{\cos (c+d x)^{3/2} (a \sec (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {A \cos ^2(c+d x)+B \cos (c+d x)+C}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {a (A-B+7 C)+3 a (A+B-C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (A-B+7 C)+3 a (A+B-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (A-B+7 C)+3 a (A+B-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int -\frac {3 a^2 (B-4 C)-a^2 (A+2 B-5 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}+\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {\int \frac {3 a^2 (B-4 C)-a^2 (A+2 B-5 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {\int \frac {3 a^2 (B-4 C)-a^2 (A+2 B-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a^2 (A+2 B-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 (A+2 B-5 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}-\frac {3 a^2 (B-4 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^2 (A+2 B-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + a*Sec 
[c + d*x])^2),x]
 

Output:

-1/3*((A - B + C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x]) 
^2) + ((2*(A + 2*B - 5*C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + 
 d*x])) - ((-2*a^2*(A + 2*B - 5*C)*EllipticF[(c + d*x)/2, 2])/d + 3*a^2*(B 
 - 4*C)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c 
 + d*x]])))/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(558\) vs. \(2(158)=316\).

Time = 3.28 (sec) , antiderivative size = 559, normalized size of antiderivative = 3.35

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (B -4 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -10 B +43 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -7 B +37 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{6 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(559\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, 
method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-1/6*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(-2*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))+2*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2))-5*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+12*C*EllipticE(co 
s(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+2*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2 
))+2*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2))-5*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+12*C*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)+12*(-2*sin(1/2*d*x+1/2*c)^4+si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(B-4*C)*sin(1/2*d*x+1/2*c)^6+2*(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-10*B+43*C)*sin(1/2*d*x+1/2*c)^4-(-2 
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-7*B+37*C)*sin(1/2*d*x 
+1/2*c)^2)/sin(1/2*d*x+1/2*c)^3/(2*sin(1/2*d*x+1/2*c)^2-1)/cos(1/2*d*x+1/2 
*c)/(sin(1/2*d*x+1/2*c)^2-1)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 427, normalized size of antiderivative = 2.56 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (B - 4 \, C\right )} \cos \left (d x + c\right )^{2} - {\left (A - 4 \, B + 19 \, C\right )} \cos \left (d x + c\right ) - 6 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (-i \, A - 2 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A + 2 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-i \, B + 4 i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (-i \, B + 4 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, B + 4 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (i \, B - 4 i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (i \, B - 4 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, B - 4 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="fricas")
 

Output:

-1/6*(2*(3*(B - 4*C)*cos(d*x + c)^2 - (A - 4*B + 19*C)*cos(d*x + c) - 6*C) 
*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A - 2*I*B + 5*I*C)*cos(d*x 
 + c)^3 - 2*sqrt(2)*(I*A + 2*I*B - 5*I*C)*cos(d*x + c)^2 + sqrt(2)*(-I*A - 
 2*I*B + 5*I*C)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I* 
sin(d*x + c)) - (sqrt(2)*(I*A + 2*I*B - 5*I*C)*cos(d*x + c)^3 - 2*sqrt(2)* 
(-I*A - 2*I*B + 5*I*C)*cos(d*x + c)^2 + sqrt(2)*(I*A + 2*I*B - 5*I*C)*cos( 
d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(s 
qrt(2)*(-I*B + 4*I*C)*cos(d*x + c)^3 + 2*sqrt(2)*(-I*B + 4*I*C)*cos(d*x + 
c)^2 + sqrt(2)*(-I*B + 4*I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierst 
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(I*B - 4* 
I*C)*cos(d*x + c)^3 + 2*sqrt(2)*(I*B - 4*I*C)*cos(d*x + c)^2 + sqrt(2)*(I* 
B - 4*I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x 
+ c)^2 + a^2*d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+a*sec(d*x+ 
c))**2,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2* 
cos(d*x + c)^(3/2)), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a/cos 
(c + d*x))^2),x)
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a/cos 
(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right ) b}{a^{2}} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**2*sec(c + d*x)**2 + 2*cos(c + d*x)* 
*2*sec(c + d*x) + cos(c + d*x)**2),x)*a + int((sqrt(cos(c + d*x))*sec(c + 
d*x)**2)/(cos(c + d*x)**2*sec(c + d*x)**2 + 2*cos(c + d*x)**2*sec(c + d*x) 
 + cos(c + d*x)**2),x)*c + int((sqrt(cos(c + d*x))*sec(c + d*x))/(cos(c + 
d*x)**2*sec(c + d*x)**2 + 2*cos(c + d*x)**2*sec(c + d*x) + cos(c + d*x)**2 
),x)*b)/a**2