\(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1248]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 140 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 a (A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \] Output:

2*a^(1/2)*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^ 
(1/2)*sec(d*x+c)^(1/2)/d+2/3*a*(A+3*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a* 
sec(d*x+c))^(1/2)+2/3*A*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c) 
/d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 1.32 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.68 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a \left ((2 A+3 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}-3 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \sin (c+d x)}{3 d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] 
+ C*Sec[c + d*x]^2),x]
 

Output:

(2*a*((2*A + 3*B + A*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 3*C*ArcSin[Sqr 
t[Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Sin[c + d*x])/(3*d*Sqrt[-1 + Cos[c + 
d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4753, 3042, 4574, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{3/2} \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x) a+a} \left (C \sec ^2(c+d x)+B \sec (c+d x)+A\right )}{\sec ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+B \csc \left (c+d x+\frac {\pi }{2}\right )+A\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int \frac {\sqrt {\sec (c+d x) a+a} (a (A+3 B)+3 a C \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x) a+a} (a (A+3 B)+3 a C \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A+3 B)+3 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 a C \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 (A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 a C \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^2 (A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a^2 (A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {6 a C \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {6 a^{3/2} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 (A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )\)

Input:

Int[Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Se 
c[c + d*x]^2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c 
 + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + ((6*a^(3/2)*C*ArcSinh[(Sqrt[a]*Tan[c + 
 d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*(A + 3*B)*Sqrt[Sec[c + d*x]]* 
Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 3.16 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.27

method result size
default \(\frac {\left (3 C \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+3 C \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (2 \cos \left (d x +c \right )+4\right ) \sin \left (d x +c \right ) A \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+6 B \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{3 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(178\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x,method=_RETURNVERBOSE)
 

Output:

1/3/d*(3*C*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2)) 
+3*C*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))+(2*co 
s(d*x+c)+4)*sin(d*x+c)*A*(-1/(cos(d*x+c)+1))^(1/2)+6*B*(-1/(cos(d*x+c)+1)) 
^(1/2)*sin(d*x+c))*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1 
)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 329, normalized size of antiderivative = 2.35 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {4 \, {\left (A \cos \left (d x + c\right ) + 2 \, A + 3 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {2 \, {\left (A \cos \left (d x + c\right ) + 2 \, A + 3 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="fricas")
 

Output:

[1/6*(4*(A*cos(d*x + c) + 2*A + 3*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*(C*cos(d*x + c) + C)*sqrt(a)*log((a 
*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d 
*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/( 
cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c) + d), 1/3*(2*(A*cos(d*x 
 + c) + 2*A + 3*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + 
c))*sin(d*x + c) + 3*(C*cos(d*x + c) + C)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos( 
d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec( 
d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 380 vs. \(2 (118) = 236\).

Time = 0.28 (sec) , antiderivative size = 380, normalized size of antiderivative = 2.71 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="maxima")
 

Output:

1/6*(sqrt(2)*(3*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d 
*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3*a 
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A*sqrt(a) + 12*sqrt(2 
)*B*sqrt(a)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 3*C*sqrt(a)*(lo 
g(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2* 
d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sq 
rt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 
 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2 
*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)))/d
 

Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.64 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\frac {3 \, C a^{\frac {3}{2}} \log \left (\frac {{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} + \frac {2 \, {\left (3 \, \sqrt {2} A a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, \sqrt {2} B a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (\sqrt {2} A a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, \sqrt {2} B a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}}}{3 \, d} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="giac")
 

Output:

1/3*(3*C*a^(3/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2* 
d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) - 6* 
a))*sgn(cos(d*x + c))/abs(a) + 2*(3*sqrt(2)*A*a^2*sgn(cos(d*x + c)) + 3*sq 
rt(2)*B*a^2*sgn(cos(d*x + c)) + (sqrt(2)*A*a^2*sgn(cos(d*x + c)) + 3*sqrt( 
2)*B*a^2*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/( 
a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/ 
cos(c + d*x)^2),x)
 

Output:

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/ 
cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)*sec(c 
+ d*x)**2,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x 
)*sec(c + d*x),x)*b + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c 
+ d*x),x)*a)