\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [1250]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 151 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a} (8 A+4 B+3 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a (4 B+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

1/4*a^(1/2)*(8*A+4*B+3*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2 
))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/4*a*(4*B+C)*sin(d*x+c)/d/cos(d*x+ 
c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+1/2*C*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d/ 
cos(d*x+c)^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.60 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.15 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {a \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \left ((4 B+3 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )-8 A \arcsin \left (\sqrt {\sec (c+d x)}\right )+2 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+4 B \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}+3 C \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \sin (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2 
))/Sqrt[Cos[c + d*x]],x]
 

Output:

(a*Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*((4*B + 3*C)*ArcSin[Sqrt[1 - Sec[ 
c + d*x]]] - 8*A*ArcSin[Sqrt[Sec[c + d*x]]] + 2*C*Sqrt[1 - Sec[c + d*x]]*S 
ec[c + d*x]^(3/2) + 4*B*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])] + 3*C*Sq 
rt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Sin[c + d*x])/(4*d*Sqrt[1 - Sec[c 
 + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4753, 3042, 4576, 27, 3042, 4504, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} \left (C \sec ^2(c+d x)+B \sec (c+d x)+A\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+B \csc \left (c+d x+\frac {\pi }{2}\right )+A\right )dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {1}{2} \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (a (4 A+C)+a (4 B+C) \sec (c+d x))dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (a (4 A+C)+a (4 B+C) \sec (c+d x))dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+C)+a (4 B+C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 4504

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} a (8 A+4 B+3 C) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (4 B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} a (8 A+4 B+3 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 (4 B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 (4 B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (8 A+4 B+3 C) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^{3/2} (8 A+4 B+3 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (4 B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\right )\)

Input:

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqr 
t[Cos[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((C*Sec[c + d*x]^(3/2)*Sqrt[a + a*Se 
c[c + d*x]]*Sin[c + d*x])/(2*d) + ((a^(3/2)*(8*A + 4*B + 3*C)*ArcSinh[(Sqr 
t[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^2*(4*B + C)*Sec[c + d 
*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(381\) vs. \(2(127)=254\).

Time = 3.23 (sec) , antiderivative size = 382, normalized size of antiderivative = 2.53

method result size
default \(-\frac {\left (8 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+4 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+3 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+8 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+4 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+3 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-4 B \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (-3 \cos \left (d x +c \right )-2\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{8 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(382\)

Input:

int((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

-1/8/d*(8*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2 
))*cos(d*x+c)^2+4*B*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+ 
1))^(1/2))*cos(d*x+c)^2+3*C*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos 
(d*x+c)+1))^(1/2))*cos(d*x+c)^2+8*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/ 
(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+4*B*arctan(1/2*(-cot(d*x+c)+csc(d* 
x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+3*C*arctan(1/2*(-cot(d*x+c 
)+csc(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-4*B*2^(1/2)*(-2/(c 
os(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)+sin(d*x+c)*(-3*cos(d*x+c)-2)*2^( 
1/2)*C*(-2/(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)/cos(d*x+c)^(3/2 
)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.74 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\left [\frac {4 \, {\left ({\left (4 \, B + 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (8 \, A + 4 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A + 4 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left ({\left (4 \, B + 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (8 \, A + 4 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A + 4 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{8 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c 
)^(1/2),x, algorithm="fricas")
 

Output:

[1/16*(4*((4*B + 3*C)*cos(d*x + c) + 2*C)*sqrt((a*cos(d*x + c) + a)/cos(d* 
x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((8*A + 4*B + 3*C)*cos(d*x + c)^ 
3 + (8*A + 4*B + 3*C)*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sq 
rt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos( 
d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d 
*x + c)^2)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), 1/8*(2*((4*B + 3*C)*co 
s(d*x + c) + 2*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c 
))*sin(d*x + c) + ((8*A + 4*B + 3*C)*cos(d*x + c)^3 + (8*A + 4*B + 3*C)*co 
s(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) 
- 2*a)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]
 

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x 
+c)**(1/2),x)
 

Output:

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)** 
2)/sqrt(cos(c + d*x)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2167 vs. \(2 (127) = 254\).

Time = 0.36 (sec) , antiderivative size = 2167, normalized size of antiderivative = 14.35 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c 
)^(1/2),x, algorithm="maxima")
 

Output:

1/16*(8*A*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/ 
2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2* 
sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x 
 + 1/2*c) + 2)) - 4*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)) 
)*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)) 
)*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d* 
x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin 
(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(si 
n(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d 
*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2 
*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d* 
x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + 
 c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
 + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arc 
tan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 583 vs. \(2 (127) = 254\).

Time = 0.62 (sec) , antiderivative size = 583, normalized size of antiderivative = 3.86 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c 
)^(1/2),x, algorithm="giac")
 

Output:

1/8*((8*A*sqrt(a)*sgn(cos(d*x + c)) + 4*B*sqrt(a)*sgn(cos(d*x + c)) + 3*C* 
sqrt(a)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - (8*A*sqrt(a)*sgn(co 
s(d*x + c)) + 4*B*sqrt(a)*sgn(cos(d*x + c)) + 3*C*sqrt(a)*sgn(cos(d*x + c) 
))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + 
 a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(12*(sqrt(a)*tan(1/2*d*x + 1/2*c) 
 - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*a^(3/2)*sgn(cos(d*x + c)) - 5*( 
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*a^( 
3/2)*sgn(cos(d*x + c)) - 76*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2 
*d*x + 1/2*c)^2 + a))^4*B*a^(5/2)*sgn(cos(d*x + c)) - 19*(sqrt(a)*tan(1/2* 
d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*a^(5/2)*sgn(cos(d*x 
 + c)) + 36*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 
+ a))^2*B*a^(7/2)*sgn(cos(d*x + c)) + 17*(sqrt(a)*tan(1/2*d*x + 1/2*c) - s 
qrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^(7/2)*sgn(cos(d*x + c)) - 4*B*a^( 
9/2)*sgn(cos(d*x + c)) - C*a^(9/2)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \] Input:

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/c 
os(c + d*x)^(1/2),x)
 

Output:

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/c 
os(c + d*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a \right ) \] Input:

int((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2 
),x)
 

Output:

sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**2)/c 
os(c + d*x),x)*c + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + 
d*x))/cos(c + d*x),x)*b + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/ 
cos(c + d*x),x)*a)