\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx\) [1276]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 181 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {(2 B-C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {\sqrt {2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {C \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \] Output:

(2*B-C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2 
)*sec(d*x+c)^(1/2)/a^(1/2)/d+2^(1/2)*(A-B+C)*arctanh(1/2*a^(1/2)*sec(d*x+c 
)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d* 
x+c)^(1/2)/a^(1/2)/d+C*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2 
)
 

Mathematica [A] (warning: unable to verify)

Time = 0.49 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.88 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \left (C \arcsin \left (\sqrt {1-\sec (c+d x)}\right )-2 (B-C) \arcsin \left (\sqrt {\sec (c+d x)}\right )-\sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+C \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \sin (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt 
[a + a*Sec[c + d*x]]),x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*(C*ArcSin[Sqrt[1 - Sec[c + d*x]]] - 
 2*(B - C)*ArcSin[Sqrt[Sec[c + d*x]]] - Sqrt[2]*(A - B + C)*ArcTan[(Sqrt[2 
]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]] + C*Sqrt[-((-1 + Sec[c + d*x 
])*Sec[c + d*x])])*Sin[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec 
[c + d*x])])
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.95, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3042, 4753, 3042, 4576, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)} \left (C \sec ^2(c+d x)+B \sec (c+d x)+A\right )}{\sqrt {\sec (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+B \csc \left (c+d x+\frac {\pi }{2}\right )+A\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)} (a (2 A+C)+a (2 B-C) \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)} (a (2 A+C)+a (2 B-C) \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a (2 A+C)+a (2 B-C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A-B+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx+(2 B-C) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+(2 B-C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 (2 B-C) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {2 \sqrt {a} (2 B-C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 \sqrt {a} (2 B-C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a (A-B+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 \sqrt {2} \sqrt {a} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 \sqrt {a} (2 B-C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + a 
*Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((2*Sqrt[a]*(2*B - C)*ArcSinh[(Sqrt 
[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*Sqrt[2]*Sqrt[a]*(A - B 
 + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + 
a*Sec[c + d*x]])])/d)/(2*a) + (C*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[ 
a + a*Sec[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(387\) vs. \(2(152)=304\).

Time = 3.32 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.14

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 A \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}-2 B \sqrt {2}\, \cos \left (d x +c \right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \sqrt {2}+2 C \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right ) \sqrt {2}+2 B \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 B \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-C \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-C \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{2 d a \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )}\) \(388\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/2/d*(a*(1+sec(d*x+c)))^(1/2)*(2*A*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1)) 
^(1/2)*(-csc(d*x+c)+cot(d*x+c)))*cos(d*x+c)*2^(1/2)-2*B*2^(1/2)*cos(d*x+c) 
*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))+C* 
(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*2^(1/2)+2*C*arctan(1/2*2^(1/2)/(-1/(c 
os(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))*cos(d*x+c)*2^(1/2)+2*B*cos(d 
*x+c)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))+2*B* 
cos(d*x+c)*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1)) 
-C*cos(d*x+c)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/ 
2))-C*cos(d*x+c)*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+ 
c)+1)))/a/(-1/(cos(d*x+c)+1))^(1/2)/cos(d*x+c)^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 589, normalized size of antiderivative = 3.25 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="fricas")
 

Output:

[1/4*(4*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c) - ((2*B - C)*cos(d*x + c)^2 + (2*B - C)*cos(d*x + c))*sqrt(a)*log( 
(a*cos(d*x + c)^3 + 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos 
(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a) 
/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 2*sqrt(2)*((A - B + C)*a*cos(d*x + c 
)^2 + (A - B + C)*a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a 
*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 
 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d* 
cos(d*x + c)^2 + a*d*cos(d*x + c)), -1/2*(2*sqrt(2)*((A - B + C)*a*cos(d*x 
 + c)^2 + (A - B + C)*a*cos(d*x + c))*sqrt(-1/a)*arctan(1/2*sqrt(2)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))*sin(d*x + 
c)/(cos(d*x + c) + 1)) - 2*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt( 
cos(d*x + c))*sin(d*x + c) - ((2*B - C)*cos(d*x + c)^2 + (2*B - C)*cos(d*x 
 + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))* 
sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) 
)/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*sec(d*x+ 
c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(sqrt(a*(sec(c + d*x) + 
1))*sqrt(cos(c + d*x))), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 19132 vs. \(2 (152) = 304\).

Time = 0.50 (sec) , antiderivative size = 19132, normalized size of antiderivative = 105.70 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="maxima")
 

Output:

1/4*(2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*si 
n(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x 
 + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*A/sqrt(a) - 2*(sqrt(2)*log(cos( 
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin( 
3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - sqrt(2)*log(cos(1/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2 
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c) 
, cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/ 
2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3 
/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/ 
2*d*x + 3/2*c))) + 2) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/ 
2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
+ 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 352 vs. \(2 (152) = 304\).

Time = 170.78 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.94 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A \sqrt {a} - B \sqrt {a} + C \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {{\left (2 \, B - C\right )} \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {{\left (2 \, B - C\right )} \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {4 \, \sqrt {2} {\left (3 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} C \sqrt {a} - C a^{\frac {3}{2}}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{2 \, d} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="giac")
 

Output:

-1/2*(sqrt(2)*(A*sqrt(a) - B*sqrt(a) + C*sqrt(a))*log((sqrt(a)*tan(1/2*d*x 
 + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(a*sgn(cos(d*x + c))) - 
 (2*B - C)*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(sqrt(a)*sgn(cos(d*x + c))) + (2*B - 
C)*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + 
 a))^2 + a*(2*sqrt(2) - 3)))/(sqrt(a)*sgn(cos(d*x + c))) - 4*sqrt(2)*(3*(s 
qrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt 
(a) - C*a^(3/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^2*a + a^2)*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos 
(c + d*x))^(1/2)),x)
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos 
(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\cos \left (d x +c \right )}d x \right ) a \right )}{a} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x)**2)/ 
(cos(c + d*x)*sec(c + d*x) + cos(c + d*x)),x)*c + int((sqrt(sec(c + d*x) + 
 1)*sqrt(cos(c + d*x))*sec(c + d*x))/(cos(c + d*x)*sec(c + d*x) + cos(c + 
d*x)),x)*b + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x) 
*sec(c + d*x) + cos(c + d*x)),x)*a))/a