\(\int \cos ^2(c+d x) (a+a \sec (c+d x))^3 (A+C \sec ^2(c+d x)) \, dx\) [106]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 162 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {1}{2} a^3 (7 A+2 C) x+\frac {a^3 (2 A+7 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {5 a^3 (A-C) \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^3 \sin (c+d x)}{2 d}-\frac {(A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{2 a d}-\frac {(A-4 C) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{2 d} \] Output:

1/2*a^3*(7*A+2*C)*x+1/2*a^3*(2*A+7*C)*arctanh(sin(d*x+c))/d+5/2*a^3*(A-C)* 
sin(d*x+c)/d+1/2*A*cos(d*x+c)*(a+a*sec(d*x+c))^3*sin(d*x+c)/d-1/2*(A-C)*(a 
^2+a^2*sec(d*x+c))^2*sin(d*x+c)/a/d-1/2*(A-4*C)*(a^3+a^3*sec(d*x+c))*sin(d 
*x+c)/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(364\) vs. \(2(162)=324\).

Time = 4.40 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.25 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^3 \cos ^5(c+d x) \sec ^6\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \left (2 (7 A+2 C) x-\frac {2 (2 A+7 C) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {2 (2 A+7 C) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {12 A \cos (d x) \sin (c)}{d}+\frac {A \cos (2 d x) \sin (2 c)}{d}+\frac {12 A \cos (c) \sin (d x)}{d}+\frac {A \cos (2 c) \sin (2 d x)}{d}+\frac {C}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {12 C \sin \left (\frac {d x}{2}\right )}{d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}-\frac {C}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {12 C \sin \left (\frac {d x}{2}\right )}{d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )}{16 (A+2 C+A \cos (2 (c+d x)))} \] Input:

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]
 

Output:

(a^3*Cos[c + d*x]^5*Sec[(c + d*x)/2]^6*(1 + Sec[c + d*x])^3*(A + C*Sec[c + 
 d*x]^2)*(2*(7*A + 2*C)*x - (2*(2*A + 7*C)*Log[Cos[(c + d*x)/2] - Sin[(c + 
 d*x)/2]])/d + (2*(2*A + 7*C)*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/d 
+ (12*A*Cos[d*x]*Sin[c])/d + (A*Cos[2*d*x]*Sin[2*c])/d + (12*A*Cos[c]*Sin[ 
d*x])/d + (A*Cos[2*c]*Sin[2*d*x])/d + C/(d*(Cos[(c + d*x)/2] - Sin[(c + d* 
x)/2])^2) + (12*C*Sin[(d*x)/2])/(d*(Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2] 
 - Sin[(c + d*x)/2])) - C/(d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2) + (1 
2*C*Sin[(d*x)/2])/(d*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d* 
x)/2]))))/(16*(A + 2*C + A*Cos[2*(c + d*x)]))
 

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.96, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 4575, 3042, 4506, 27, 3042, 4506, 3042, 4484, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) (a \sec (c+d x)+a)^3 \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {\int \cos (c+d x) (\sec (c+d x) a+a)^3 (3 a A-2 a (A-C) \sec (c+d x))dx}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (3 a A-2 a (A-C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\frac {1}{2} \int 2 \cos (c+d x) (\sec (c+d x) a+a)^2 \left (a^2 (4 A-C)-a^2 (A-4 C) \sec (c+d x)\right )dx-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cos (c+d x) (\sec (c+d x) a+a)^2 \left (a^2 (4 A-C)-a^2 (A-4 C) \sec (c+d x)\right )dx-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a^2 (4 A-C)-a^2 (A-4 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\int \cos (c+d x) (\sec (c+d x) a+a) \left (5 (A-C) a^3+(2 A+7 C) \sec (c+d x) a^3\right )dx-\frac {(A-4 C) \sin (c+d x) \left (a^4 \sec (c+d x)+a^4\right )}{d}-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (5 (A-C) a^3+(2 A+7 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^3\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {(A-4 C) \sin (c+d x) \left (a^4 \sec (c+d x)+a^4\right )}{d}-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 4484

\(\displaystyle \frac {-\int \left (-\left ((7 A+2 C) a^4\right )-(2 A+7 C) \sec (c+d x) a^4\right )dx+\frac {5 a^4 (A-C) \sin (c+d x)}{d}-\frac {(A-4 C) \sin (c+d x) \left (a^4 \sec (c+d x)+a^4\right )}{d}-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {a^4 (2 A+7 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {5 a^4 (A-C) \sin (c+d x)}{d}-\frac {(A-4 C) \sin (c+d x) \left (a^4 \sec (c+d x)+a^4\right )}{d}+a^4 x (7 A+2 C)-\frac {(A-C) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{d}}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^3}{2 d}\)

Input:

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]
 

Output:

(A*Cos[c + d*x]*(a + a*Sec[c + d*x])^3*Sin[c + d*x])/(2*d) + (a^4*(7*A + 2 
*C)*x + (a^4*(2*A + 7*C)*ArcTanh[Sin[c + d*x]])/d + (5*a^4*(A - C)*Sin[c + 
 d*x])/d - ((A - C)*(a^2 + a^2*Sec[c + d*x])^2*Sin[c + d*x])/d - ((A - 4*C 
)*(a^4 + a^4*Sec[c + d*x])*Sin[c + d*x])/d)/(2*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4484
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*a*Cot[e + 
f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n)   Int[(d*Csc[e + f*x])^( 
n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.94

method result size
derivativedivides \(\frac {a^{3} A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{3} C \left (d x +c \right )+3 a^{3} A \sin \left (d x +c \right )+3 a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} A \left (d x +c \right )+3 a^{3} C \tan \left (d x +c \right )+a^{3} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(153\)
default \(\frac {a^{3} A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{3} C \left (d x +c \right )+3 a^{3} A \sin \left (d x +c \right )+3 a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} A \left (d x +c \right )+3 a^{3} C \tan \left (d x +c \right )+a^{3} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(153\)
parallelrisch \(\frac {3 a^{3} \left (-\frac {2 \left (A +\frac {7 C}{2}\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{3}+\frac {2 \left (A +\frac {7 C}{2}\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{3}+\frac {7 \left (A +\frac {2 C}{7}\right ) d x \cos \left (2 d x +2 c \right )}{3}+\left (\frac {A}{6}+2 C \right ) \sin \left (2 d x +2 c \right )+A \sin \left (3 d x +3 c \right )+\frac {A \sin \left (4 d x +4 c \right )}{12}+\left (A +\frac {2 C}{3}\right ) \sin \left (d x +c \right )+\frac {7 \left (A +\frac {2 C}{7}\right ) d x}{3}\right )}{2 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(162\)
risch \(\frac {7 a^{3} A x}{2}+a^{3} x C -\frac {i a^{3} A \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {3 i a^{3} A \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}+\frac {3 i a^{3} A \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {i a^{3} A \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {i a^{3} C \left ({\mathrm e}^{3 i \left (d x +c \right )}-6 \,{\mathrm e}^{2 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}-6\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{d}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}\) \(234\)
norman \(\frac {\left (\frac {7}{2} a^{3} A +a^{3} C \right ) x +\left (-\frac {7}{2} a^{3} A -a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-\frac {7}{2} a^{3} A -a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (\frac {7}{2} a^{3} A +a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}+\left (-7 a^{3} A -2 a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (-7 a^{3} A -2 a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (14 a^{3} A +4 a^{3} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\frac {5 a^{3} \left (A -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{d}+\frac {7 a^{3} \left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 a^{3} \left (A +5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {2 a^{3} \left (11 A -7 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {a^{3} \left (13 A -7 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}-\frac {a^{3} \left (23 A +5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {a^{3} \left (2 A +7 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{3} \left (2 A +7 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(403\)

Input:

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x,method=_RETURNVER 
BOSE)
 

Output:

1/d*(a^3*A*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a^3*C*(d*x+c)+3*a^3*A 
*sin(d*x+c)+3*a^3*C*ln(sec(d*x+c)+tan(d*x+c))+3*a^3*A*(d*x+c)+3*a^3*C*tan( 
d*x+c)+a^3*A*ln(sec(d*x+c)+tan(d*x+c))+a^3*C*(1/2*sec(d*x+c)*tan(d*x+c)+1/ 
2*ln(sec(d*x+c)+tan(d*x+c))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.91 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (7 \, A + 2 \, C\right )} a^{3} d x \cos \left (d x + c\right )^{2} + {\left (2 \, A + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (2 \, A + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (A a^{3} \cos \left (d x + c\right )^{3} + 6 \, A a^{3} \cos \left (d x + c\right )^{2} + 6 \, C a^{3} \cos \left (d x + c\right ) + C a^{3}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm= 
"fricas")
 

Output:

1/4*(2*(7*A + 2*C)*a^3*d*x*cos(d*x + c)^2 + (2*A + 7*C)*a^3*cos(d*x + c)^2 
*log(sin(d*x + c) + 1) - (2*A + 7*C)*a^3*cos(d*x + c)^2*log(-sin(d*x + c) 
+ 1) + 2*(A*a^3*cos(d*x + c)^3 + 6*A*a^3*cos(d*x + c)^2 + 6*C*a^3*cos(d*x 
+ c) + C*a^3)*sin(d*x + c))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**3*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.08 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{3} + 12 \, {\left (d x + c\right )} A a^{3} + 4 \, {\left (d x + c\right )} C a^{3} - C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{3} \sin \left (d x + c\right ) + 12 \, C a^{3} \tan \left (d x + c\right )}{4 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm= 
"maxima")
 

Output:

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^3 + 12*(d*x + c)*A*a^3 + 4*(d*x 
+ c)*C*a^3 - C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) 
 + 1) + log(sin(d*x + c) - 1)) + 2*A*a^3*(log(sin(d*x + c) + 1) - log(sin( 
d*x + c) - 1)) + 6*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 
 12*A*a^3*sin(d*x + c) + 12*C*a^3*tan(d*x + c))/d
 

Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.42 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {{\left (7 \, A a^{3} + 2 \, C a^{3}\right )} {\left (d x + c\right )} + {\left (2 \, A a^{3} + 7 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (2 \, A a^{3} + 7 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (5 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 5 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 3 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 9 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 7 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 7 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 1\right )}^{2}}}{2 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm= 
"giac")
 

Output:

1/2*((7*A*a^3 + 2*C*a^3)*(d*x + c) + (2*A*a^3 + 7*C*a^3)*log(abs(tan(1/2*d 
*x + 1/2*c) + 1)) - (2*A*a^3 + 7*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) 
 + 2*(5*A*a^3*tan(1/2*d*x + 1/2*c)^7 - 5*C*a^3*tan(1/2*d*x + 1/2*c)^7 - 3* 
A*a^3*tan(1/2*d*x + 1/2*c)^5 - 3*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 9*A*a^3*ta 
n(1/2*d*x + 1/2*c)^3 + 9*C*a^3*tan(1/2*d*x + 1/2*c)^3 + 7*A*a^3*tan(1/2*d* 
x + 1/2*c) + 7*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^4 - 1)^2) 
/d
 

Mupad [B] (verification not implemented)

Time = 12.35 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.28 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3\,A\,a^3\,\sin \left (c+d\,x\right )}{d}+\frac {7\,A\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,A\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {7\,C\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {3\,C\,a^3\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {C\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {A\,a^3\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )}{2\,d} \] Input:

int(cos(c + d*x)^2*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3,x)
 

Output:

(3*A*a^3*sin(c + d*x))/d + (7*A*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x 
)/2)))/d + (2*A*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*C 
*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (7*C*a^3*atanh(sin(c 
/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (3*C*a^3*sin(c + d*x))/(d*cos(c + d 
*x)) + (C*a^3*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (A*a^3*cos(c + d*x)*sin 
(c + d*x))/(2*d)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 318, normalized size of antiderivative = 1.96 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3} \left (\cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a -\cos \left (d x +c \right ) \sin \left (d x +c \right ) a -6 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c -2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a -7 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} c +2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a +7 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) c +2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a +7 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} c -2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a -7 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) c +6 \sin \left (d x +c \right )^{3} a +7 \sin \left (d x +c \right )^{2} a c +7 \sin \left (d x +c \right )^{2} a d x +2 \sin \left (d x +c \right )^{2} c^{2}+2 \sin \left (d x +c \right )^{2} c d x -6 \sin \left (d x +c \right ) a -\sin \left (d x +c \right ) c -7 a c -7 a d x -2 c^{2}-2 c d x \right )}{2 d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x)
 

Output:

(a**3*(cos(c + d*x)*sin(c + d*x)**3*a - cos(c + d*x)*sin(c + d*x)*a - 6*co 
s(c + d*x)*sin(c + d*x)*c - 2*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a 
- 7*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*c + 2*log(tan((c + d*x)/2) - 
 1)*a + 7*log(tan((c + d*x)/2) - 1)*c + 2*log(tan((c + d*x)/2) + 1)*sin(c 
+ d*x)**2*a + 7*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*c - 2*log(tan((c 
 + d*x)/2) + 1)*a - 7*log(tan((c + d*x)/2) + 1)*c + 6*sin(c + d*x)**3*a + 
7*sin(c + d*x)**2*a*c + 7*sin(c + d*x)**2*a*d*x + 2*sin(c + d*x)**2*c**2 + 
 2*sin(c + d*x)**2*c*d*x - 6*sin(c + d*x)*a - sin(c + d*x)*c - 7*a*c - 7*a 
*d*x - 2*c**2 - 2*c*d*x))/(2*d*(sin(c + d*x)**2 - 1))