\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\) [1320]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 97 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}+\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d} \] Output:

2*A*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-2*(A*b-B*a)*InverseJacobiAM( 
1/2*d*x+1/2*c,2^(1/2))/a^2/d+2*(A*b^2-a*(B*b-C*a))*EllipticPi(sin(1/2*d*x+ 
1/2*c),2*a/(a+b),2^(1/2))/a^2/(a+b)/d
 

Mathematica [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ b*Sec[c + d*x]),x]
 

Output:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ b*Sec[c + d*x]), x]
 

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.256, Rules used = {3042, 4600, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {A \cos ^2(c+d x)+B \cos (c+d x)+C}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+b)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+b\right )}dx\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {A \int \sqrt {\cos (c+d x)}dx}{a}-\frac {\int -\frac {a C-(A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a C-(A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}+\frac {A \int \sqrt {\cos (c+d x)}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a C+(a B-A b) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}+\frac {A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\int \frac {a C+(a B-A b) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}-\frac {(A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a}}{a}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {(A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}}{a}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)}-\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}}{a}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Se 
c[c + d*x]),x]
 

Output:

(2*A*EllipticE[(c + d*x)/2, 2])/(a*d) + ((-2*(A*b - a*B)*EllipticF[(c + d* 
x)/2, 2])/(a*d) + (2*(A*b^2 - a*(b*B - a*C))*EllipticPi[(2*a)/(a + b), (c 
+ d*x)/2, 2])/(a*(a + b)*d))/a
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(322\) vs. \(2(102)=204\).

Time = 5.42 (sec) , antiderivative size = 323, normalized size of antiderivative = 3.33

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +A \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) b^{2}-B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}+B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -B \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) a b +C \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) a^{2}\right )}{a^{2} \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(323\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 

Output:

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/ 
2*c),2^(1/2))*a*b-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+A*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2))*a^2-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a* 
b+A*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b^2-B*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))*a^2+B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-B*E 
llipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a*b+C*EllipticPi(cos(1/2*d 
*x+1/2*c),2*a/(a-b),2^(1/2))*a^2)/a^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1 
/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2) 
/d
 

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="fricas")
 

Output:

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec 
(d*x + c) + a), x)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{a + b \sec {\left (c + d x \right )}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+ 
c)),x)
 

Output:

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(cos(c + d*x))/(a + 
b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*se 
c(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c) 
),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*se 
c(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/co 
s(c + d*x)),x)
                                                                                    
                                                                                    
 

Output:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/co 
s(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\sec \left (d x +c \right ) b +a}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right ) b +a}d x \right ) b \] Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(sec(c + d*x)*b + a),x)*a + int((sqrt(cos(c + d*x)) 
*sec(c + d*x)**2)/(sec(c + d*x)*b + a),x)*c + int((sqrt(cos(c + d*x))*sec( 
c + d*x))/(sec(c + d*x)*b + a),x)*b