\(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [123]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 107 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {(2 A+3 C) \text {arctanh}(\sin (c+d x))}{2 a d}-\frac {(A+2 C) \tan (c+d x)}{a d}+\frac {(2 A+3 C) \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \sec (c+d x))} \] Output:

1/2*(2*A+3*C)*arctanh(sin(d*x+c))/a/d-(A+2*C)*tan(d*x+c)/a/d+1/2*(2*A+3*C) 
*sec(d*x+c)*tan(d*x+c)/a/d-(A+C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c) 
)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(316\) vs. \(2(107)=214\).

Time = 3.10 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.95 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \cos (c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (-4 (A+C) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+\cos \left (\frac {1}{2} (c+d x)\right ) \left (-2 (2 A+3 C) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 C \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {C}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {C}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {4 C \sin (d x)}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )\right )}{a d (A+2 C+A \cos (2 (c+d x))) (1+\sec (c+d x))} \] Input:

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]*Cos[c + d*x]*(A + C*Sec[c + d*x]^2)*(-4*(A + C)*Sec[c/2] 
*Sin[(d*x)/2] + Cos[(c + d*x)/2]*(-2*(2*A + 3*C)*Log[Cos[(c + d*x)/2] - Si 
n[(c + d*x)/2]] + 4*A*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + 6*C*Log[C 
os[(c + d*x)/2] + Sin[(c + d*x)/2]] + C/(Cos[(c + d*x)/2] - Sin[(c + d*x)/ 
2])^2 - C/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - (4*C*Sin[d*x])/((Cos[c 
/2] - Sin[c/2])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2] 
)*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(A + 2*C + A*Cos[2*(c + d 
*x)])*(1 + Sec[c + d*x]))
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.94, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 4573, 3042, 4274, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle -\frac {\int \sec ^2(c+d x) (a (A+2 C)-a (2 A+3 C) \sec (c+d x))dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a (A+2 C)-a (2 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {a (A+2 C) \int \sec ^2(c+d x)dx-a (2 A+3 C) \int \sec ^3(c+d x)dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (A+2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx-a (2 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {-\frac {a (A+2 C) \int 1d(-\tan (c+d x))}{d}-a (2 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {\frac {a (A+2 C) \tan (c+d x)}{d}-a (2 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {\frac {a (A+2 C) \tan (c+d x)}{d}-a (2 A+3 C) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a (A+2 C) \tan (c+d x)}{d}-a (2 A+3 C) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4257

\(\displaystyle -\frac {\frac {a (A+2 C) \tan (c+d x)}{d}-a (2 A+3 C) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\)

Input:

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]
 

Output:

-(((A + C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Sec[c + d*x]))) - ((a*(A 
 + 2*C)*Tan[c + d*x])/d - a*(2*A + 3*C)*(ArcTanh[Sin[c + d*x]]/(2*d) + (Se 
c[c + d*x]*Tan[c + d*x])/(2*d)))/a^2
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.10

method result size
parallelrisch \(\frac {-\left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\left (\left (A +2 C \right ) \cos \left (2 d x +2 c \right )+C \cos \left (d x +c \right )+A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(118\)
derivativedivides \(\frac {-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\frac {C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3 C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\left (-\frac {3 C}{2}-A \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {3 C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\left (A +\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d a}\) \(135\)
default \(\frac {-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\frac {C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3 C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\left (-\frac {3 C}{2}-A \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {3 C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\left (A +\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d a}\) \(135\)
norman \(\frac {\frac {\left (A +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d}-\frac {\left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{a d}+\frac {3 \left (A +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{a d}-\frac {\left (3 A +7 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{a d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}-\frac {\left (2 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a d}+\frac {\left (2 A +3 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a d}\) \(166\)
risch \(-\frac {i \left (2 A \,{\mathrm e}^{4 i \left (d x +c \right )}+3 C \,{\mathrm e}^{4 i \left (d x +c \right )}+3 C \,{\mathrm e}^{3 i \left (d x +c \right )}+4 A \,{\mathrm e}^{2 i \left (d x +c \right )}+5 C \,{\mathrm e}^{2 i \left (d x +c \right )}+C \,{\mathrm e}^{i \left (d x +c \right )}+2 A +4 C \right )}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{a d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 a d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{a d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 a d}\) \(202\)

Input:

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBO 
SE)
 

Output:

(-(1+cos(2*d*x+2*c))*(A+3/2*C)*ln(tan(1/2*d*x+1/2*c)-1)+(1+cos(2*d*x+2*c)) 
*(A+3/2*C)*ln(tan(1/2*d*x+1/2*c)+1)-((A+2*C)*cos(2*d*x+2*c)+C*cos(d*x+c)+A 
+C)*tan(1/2*d*x+1/2*c))/d/a/(1+cos(2*d*x+2*c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.42 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {{\left ({\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left ({\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (2 \, {\left (A + 2 \, C\right )} \cos \left (d x + c\right )^{2} + C \cos \left (d x + c\right ) - C\right )} \sin \left (d x + c\right )}{4 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="f 
ricas")
 

Output:

1/4*(((2*A + 3*C)*cos(d*x + c)^3 + (2*A + 3*C)*cos(d*x + c)^2)*log(sin(d*x 
 + c) + 1) - ((2*A + 3*C)*cos(d*x + c)^3 + (2*A + 3*C)*cos(d*x + c)^2)*log 
(-sin(d*x + c) + 1) - 2*(2*(A + 2*C)*cos(d*x + c)^2 + C*cos(d*x + c) - C)* 
sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {A \sec ^{2}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{4}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \] Input:

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c)),x)
 

Output:

(Integral(A*sec(c + d*x)**2/(sec(c + d*x) + 1), x) + Integral(C*sec(c + d* 
x)**4/(sec(c + d*x) + 1), x))/a
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 239 vs. \(2 (103) = 206\).

Time = 0.04 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.23 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=-\frac {C {\left (\frac {2 \, {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a - \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac {3 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} + \frac {3 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} + \frac {2 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - 2 \, A {\left (\frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{2 \, d} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="m 
axima")
 

Output:

-1/2*(C*(2*(sin(d*x + c)/(cos(d*x + c) + 1) - 3*sin(d*x + c)^3/(cos(d*x + 
c) + 1)^3)/(a - 2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a*sin(d*x + c)^4 
/(cos(d*x + c) + 1)^4) - 3*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a + 3* 
log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a + 2*sin(d*x + c)/(a*(cos(d*x + 
c) + 1))) - 2*A*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x 
+ c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(d*x + c) + 1))))/d
 

Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.21 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\frac {{\left (2 \, A + 3 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac {{\left (2 \, A + 3 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac {2 \, {\left (A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a} + \frac {2 \, {\left (3 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a}}{2 \, d} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="g 
iac")
 

Output:

1/2*((2*A + 3*C)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (2*A + 3*C)*log(ab 
s(tan(1/2*d*x + 1/2*c) - 1))/a - 2*(A*tan(1/2*d*x + 1/2*c) + C*tan(1/2*d*x 
 + 1/2*c))/a + 2*(3*C*tan(1/2*d*x + 1/2*c)^3 - C*tan(1/2*d*x + 1/2*c))/((t 
an(1/2*d*x + 1/2*c)^2 - 1)^2*a))/d
 

Mupad [B] (verification not implemented)

Time = 12.57 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.99 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (A+\frac {3\,C}{2}\right )}{a\,d}-\frac {C\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-3\,C\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+C\right )}{a\,d} \] Input:

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))),x)
 

Output:

(2*atanh(tan(c/2 + (d*x)/2))*(A + (3*C)/2))/(a*d) - (C*tan(c/2 + (d*x)/2) 
- 3*C*tan(c/2 + (d*x)/2)^3)/(d*(a - 2*a*tan(c/2 + (d*x)/2)^2 + a*tan(c/2 + 
 (d*x)/2)^4)) - (tan(c/2 + (d*x)/2)*(A + C))/(a*d)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.66 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {2 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a +4 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} c -2 \cos \left (d x +c \right ) a -2 \cos \left (d x +c \right ) c -2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{3} a -3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{3} c +2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right ) a +3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right ) c +2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{3} a +3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{3} c -2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right ) a -3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right ) c -2 \sin \left (d x +c \right )^{2} a -3 \sin \left (d x +c \right )^{2} c +2 a +2 c}{2 \sin \left (d x +c \right ) a d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x)
 

Output:

(2*cos(c + d*x)*sin(c + d*x)**2*a + 4*cos(c + d*x)*sin(c + d*x)**2*c - 2*c 
os(c + d*x)*a - 2*cos(c + d*x)*c - 2*log(tan((c + d*x)/2) - 1)*sin(c + d*x 
)**3*a - 3*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**3*c + 2*log(tan((c + d* 
x)/2) - 1)*sin(c + d*x)*a + 3*log(tan((c + d*x)/2) - 1)*sin(c + d*x)*c + 2 
*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**3*a + 3*log(tan((c + d*x)/2) + 1) 
*sin(c + d*x)**3*c - 2*log(tan((c + d*x)/2) + 1)*sin(c + d*x)*a - 3*log(ta 
n((c + d*x)/2) + 1)*sin(c + d*x)*c - 2*sin(c + d*x)**2*a - 3*sin(c + d*x)* 
*2*c + 2*a + 2*c)/(2*sin(c + d*x)*a*d*(sin(c + d*x)**2 - 1))