\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [187]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 115 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \] Output:

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d-2^(1/2)*(A 
+C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/ 
d+2*C*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.63 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.10 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 C (-1+\cos (c+d x))-2 A \arctan \left (\sqrt {-1+\sec (c+d x)}\right ) \cos (c+d x) \sqrt {-1+\sec (c+d x)}+\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {-1+\sec (c+d x)}}{\sqrt {2}}\right ) \cos (c+d x) \sqrt {-1+\sec (c+d x)}\right ) \tan (c+d x)}{d (-1+\cos (c+d x)) \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

((2*C*(-1 + Cos[c + d*x]) - 2*A*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[c + d* 
x]*Sqrt[-1 + Sec[c + d*x]] + Sqrt[2]*(A + C)*ArcTan[Sqrt[-1 + Sec[c + d*x] 
]/Sqrt[2]]*Cos[c + d*x]*Sqrt[-1 + Sec[c + d*x]])*Tan[c + d*x])/(d*(-1 + Co 
s[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {3042, 4543, 27, 3042, 4408, 3042, 4261, 216, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4543

\(\displaystyle \frac {2 \int \frac {a A-a C \sec (c+d x)}{2 \sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a A-a C \sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a A-a C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4408

\(\displaystyle \frac {A \int \sqrt {\sec (c+d x) a+a}dx-a (A+C) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-a (A+C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {-\frac {2 a A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-a (A+C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {2 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-a (A+C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {2 a (A+C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {2 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

((2*Sqrt[a]*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - 
 (Sqrt[2]*Sqrt[a]*(A + C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + 
a*Sec[c + d*x]])])/d)/a + (2*C*Tan[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4408
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c/a   Int[Sqrt[a + b*Csc[e + f*x]], x], x] - 
Simp[(b*c - a*d)/a   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4543
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^ 
m/(f*(m + 1))), x] + Simp[1/(b*(m + 1))   Int[(a + b*Csc[e + f*x])^m*Simp[A 
*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, 
 x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(224\) vs. \(2(98)=196\).

Time = 0.50 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.96

method result size
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{d a}+\frac {C \left (-\ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d a}\) \(225\)
default \(\frac {\left (\left (2 \csc \left (d x +c \right )-2 \cot \left (d x +c \right )\right ) C +A \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-A \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-C \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d a}\) \(228\)

Input:

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-A/d/a*(a*(1+sec(d*x+c)))^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(ln(( 
-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c))-2^(1/2)*arctanh 
(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c)))) 
+C/d*(-ln((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c))*(-2* 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-2*cot(d*x+c)+2*csc(d*x+c))/a*(a*(1+sec(d* 
x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 427, normalized size of antiderivative = 3.71 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 2 \, {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 4 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {2 \, {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[1/2*(sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*log((2*sqrt( 
2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x 
 + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d*x 
 + c) + 1)) - 2*(A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2* 
sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) 
 + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 4*C*sqrt((a*cos(d*x + c) + a) 
/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), -(2*(A*cos(d*x + c) 
 + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/ 
(sqrt(a)*sin(d*x + c))) - 2*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin( 
d*x + c) - sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*arctan(sqrt(2)*sqr 
t((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/ 
sqrt(a))/(a*d*cos(d*x + c) + a*d)]
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/sqrt(a*sec(d*x + c) + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right ) c \right )}{a} \] Input:

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int(sqrt(sec(c + d*x) + 1)/(sec(c + d*x) + 1),x)*a + int((sqrt(s 
ec(c + d*x) + 1)*sec(c + d*x)**2)/(sec(c + d*x) + 1),x)*c))/a