\(\int \frac {(a+a \sec (c+d x)) (A+C \sec ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [210]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 135 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (A-C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a C \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

2*a*(A-C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c 
)^(1/2)/d+2/3*a*(A+3*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^( 
1/2))*sec(d*x+c)^(1/2)/d+2/3*a*A*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*a*C*sec(d 
*x+c)^(1/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.22 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.25 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (6 i A \cos (c+d x)-6 i C \cos (c+d x)+2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-2 i (A-C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+6 C \sin (c+d x)+A \sin (2 (c+d x))\right )}{3 d} \] Input:

Integrate[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2) 
,x]
 

Output:

(a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((6*I)*A*Cos[c + d*x] - (6*I 
)*C*Cos[c + d*x] + 2*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2 
] - (2*I)*(A - C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeome 
tric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 6*C*Sin[c + d*x] + A*Sin[2* 
(c + d*x)]))/(3*d*E^(I*d*x))
 

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 4563, 27, 3042, 4535, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4563

\(\displaystyle \frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2}{3} \int -\frac {3 a C \sec ^2(c+d x)+a (A+3 C) \sec (c+d x)+3 a A}{2 \sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 a C \sec ^2(c+d x)+a (A+3 C) \sec (c+d x)+3 a A}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+a (A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \sec ^2(c+d x)+3 a A}{\sqrt {\sec (c+d x)}}dx+a (A+3 C) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (A+3 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (\frac {2 a (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

Input:

Int[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + ((6*a*(A - C)*Sqrt[Cos[c + 
 d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + 3*C)*Sq 
rt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (6*a*C* 
Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d)/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 

rule 4563
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e 
 + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n)   Int[(d*Csc[e + f*x] 
)^(n + 1)*Simp[A*b*n + a*(C*n + A*(n + 1))*Csc[e + f*x] + b*C*n*Csc[e + f*x 
]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && LtQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(287\) vs. \(2(122)=244\).

Time = 3.19 (sec) , antiderivative size = 288, normalized size of antiderivative = 2.13

method result size
default \(-\frac {2 a \left (4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) A +A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) C +3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(288\)
parts \(-\frac {2 C a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C a \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(633\)

Input:

int((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/3*a*(4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*sin(1/2*d*x+1/2*c)^2 
*cos(1/2*d*x+1/2*c)*A+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2))-6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*C+3*C*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2 
*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.17 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} {\left (A + 3 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + 3 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (A a \cos \left (d x + c\right ) + 3 \, C a\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d} \] Input:

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorith 
m="fricas")
 

Output:

1/3*(-I*sqrt(2)*(A + 3*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*si 
n(d*x + c)) + I*sqrt(2)*(A + 3*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c)) + 3*I*sqrt(2)*(A - C)*a*weierstrassZeta(-4, 0, weierst 
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*(A - C)* 
a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d 
*x + c))) + 2*(A*a*cos(d*x + c) + 3*C*a)*sin(d*x + c)/sqrt(cos(d*x + c)))/ 
d
 

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int C \sqrt {\sec {\left (c + d x \right )}}\, dx + \int C \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2),x)
 

Output:

a*(Integral(A/sec(c + d*x)**(3/2), x) + Integral(A/sqrt(sec(c + d*x)), x) 
+ Integral(C*sqrt(sec(c + d*x)), x) + Integral(C*sec(c + d*x)**(3/2), x))
 

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(3/2), 
x)
 

Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(3/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(3/2),x 
)
 

Output:

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) c \right ) \] Input:

int((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x)
 

Output:

a*(int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x)*a + int(sqrt(sec(c + d*x))/se 
c(c + d*x),x)*a + int(sqrt(sec(c + d*x)),x)*c + int(sqrt(sec(c + d*x))*sec 
(c + d*x),x)*c)