\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx\) [234]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 124 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

(3*A+C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a/d-(A-C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*se 
c(d*x+c)^(1/2)/a/d-(A+C)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.03 (sec) , antiderivative size = 795, normalized size of antiderivative = 6.41 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx =\text {Too large to display} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])) 
,x]
 

Output:

-((Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^(( 
2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E 
^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1 
/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + C*Sec[c + d*x]^2))/(d*E 
^(I*d*x)*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x]))) - (Sqrt[2]* 
C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d 
*x))]*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c 
+ d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/ 
4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + C*Sec[c + d*x]^2))/(3*d*E^(I*d*x)* 
(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) - (2*A*Cos[c/2 + (d*x 
)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*(A + 
 C*Sec[c + d*x]^2)*Sin[c])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + 
d*x]]*(a + a*Sec[c + d*x])) + (2*C*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]] 
*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sin[c] 
)/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x] 
)) + (Cos[c/2 + (d*x)/2]^2*(A + C*Sec[c + d*x]^2)*((-2*(2*A + C + A*Cos[2* 
c])*Cos[d*x]*Csc[c/2]*Sec[c/2])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[ 
(d*x)/2] + C*Sin[(d*x)/2]))/d + (8*A*Cos[c]*Sin[d*x])/d + (4*(A + C)*Tan[c 
/2])/d))/((A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + 
 d*x]))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 4573, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle -\frac {\int -\frac {a (3 A+C)-a (A-C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx}{a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (3 A+C)-a (A-C) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (3 A+C)-a (A-C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {a (3 A+C) \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a (A-C) \int \sqrt {\sec (c+d x)}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (3 A+C) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a (A-C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])),x]
 

Output:

((2*a*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + 
d*x]])/d - (2*a*(A - C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[ 
Sec[c + d*x]])/d)/(2*a^2) - ((A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*( 
a + a*Sec[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(244\) vs. \(2(117)=234\).

Time = 2.11 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.98

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A +2 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-A -C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(245\)

Input:

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c 
)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1 
/2)))+(2*A+2*C)*sin(1/2*d*x+1/2*c)^4+(-A-C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/ 
2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2* 
d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.93 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=-\frac {2 \, {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorith 
m="fricas")
 

Output:

-1/2*(2*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(I*A - I*C)*cos 
(d*x + c) + sqrt(2)*(I*A - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) - (sqrt(2)*(-I*A + I*C)*cos(d*x + c) + sqrt(2)*(-I*A + I* 
C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*( 
3*I*A + I*C)*cos(d*x + c) + sqrt(2)*(3*I*A + I*C))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-3* 
I*A - I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A - I*C))*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + 
c) + a*d)
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \] Input:

integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

(Integral(A/(sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x) + Integral(C*se 
c(c + d*x)**2/(sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x))/a
 

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))) 
, x)
 

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)),x 
)
                                                                                    
                                                                                    
 

Output:

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) c}{a} \] Input:

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

(int(sqrt(sec(c + d*x))/(sec(c + d*x)**2 + sec(c + d*x)),x)*a + int((sqrt( 
sec(c + d*x))*sec(c + d*x))/(sec(c + d*x) + 1),x)*c)/a