\(\int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [251]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 169 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (8 A+5 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (8 A+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a C \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \] Output:

1/8*a^(1/2)*(8*A+5*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d 
+1/8*a*(8*A+5*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/12 
*a*C*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*C*sec(d*x+c) 
^(5/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 0.92 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.89 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a \left (3 (8 A+5 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+10 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+8 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)+3 (8 A+5 C) \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{24 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^ 
2),x]
 

Output:

(a*(3*(8*A + 5*C)*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 10*C*Sqrt[1 - Sec[c + d 
*x]]*Sec[c + d*x]^(3/2) + 8*C*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2) + 
3*(8*A + 5*C)*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Tan[c + d*x])/(24 
*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.270, Rules used = {3042, 4577, 27, 3042, 4504, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4577

\(\displaystyle \frac {\int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (3 a (2 A+C)+a C \sec (c+d x))dx}{3 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (3 a (2 A+C)+a C \sec (c+d x))dx}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 a (2 A+C)+a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {\frac {3}{4} a (8 A+5 C) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} a (8 A+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {\frac {3}{4} a (8 A+5 C) \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} a (8 A+5 C) \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {3}{4} a (8 A+5 C) \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {a^2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {3}{4} a (8 A+5 C) \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )}{6 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

Input:

Int[Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]
 

Output:

(C*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d) + ((a^2 
*C*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*a* 
(8*A + 5*C)*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d* 
x]]])/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]) 
))/4)/(6*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4577
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C) 
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1))), 
x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n 
*Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
 b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && 
!LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(143)=286\).

Time = 1.08 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.80

method result size
default \(\frac {\sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (24 A \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+15 C \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+24 A \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+15 C \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+24 A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+\left (15 \cos \left (d x +c \right )^{2}+10 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right )\right )}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(304\)
parts \(\frac {A \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}-\arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-\arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C \sec \left (d x +c \right )^{\frac {7}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-15 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{4}-15 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{4}+\sin \left (d x +c \right ) \left (15 \cos \left (d x +c \right )^{2}+10 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )\right )}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(356\)

Input:

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/48/d*sec(d*x+c)^(3/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d 
*x+c)+1))^(1/2)*(24*A*cos(d*x+c)^2*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(c 
ot(d*x+c)-csc(d*x+c)+1))+15*C*cos(d*x+c)^2*arctan(1/2/(-1/(cos(d*x+c)+1))^ 
(1/2)*(cot(d*x+c)-csc(d*x+c)+1))+24*A*cos(d*x+c)^2*arctan(1/2*(cot(d*x+c)- 
csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))+15*C*cos(d*x+c)^2*arctan(1/2*(cot 
(d*x+c)-csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))+24*A*(-2/(cos(d*x+c)+1))^ 
(1/2)*2^(1/2)*sin(d*x+c)*cos(d*x+c)+(15*cos(d*x+c)^2+10*cos(d*x+c)+8)*2^(1 
/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 433, normalized size of antiderivative = 2.56 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (3 \, {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, C \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{96 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {3 \, {\left ({\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, {\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, C \cos \left (d x + c\right ) + 8 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{48 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="fricas")
 

Output:

[1/96*(3*((8*A + 5*C)*cos(d*x + c)^3 + (8*A + 5*C)*cos(d*x + c)^2)*sqrt(a) 
*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d* 
x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt( 
cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(3*(8*A + 5*C) 
*cos(d*x + c)^2 + 10*C*cos(d*x + c) + 8*C)*sqrt((a*cos(d*x + c) + a)/cos(d 
*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3 + d*cos(d*x + 
c)^2), 1/48*(3*((8*A + 5*C)*cos(d*x + c)^3 + (8*A + 5*C)*cos(d*x + c)^2)*s 
qrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*(3*(8 
*A + 5*C)*cos(d*x + c)^2 + 10*C*cos(d*x + c) + 8*C)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3 + d*c 
os(d*x + c)^2)]
 

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(1/2)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2740 vs. \(2 (143) = 286\).

Time = 0.39 (sec) , antiderivative size = 2740, normalized size of antiderivative = 16.21 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="maxima")
 

Output:

-1/96*(24*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d* 
x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d* 
x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arcta 
n2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c) 
, cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) 
+ 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)* 
log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(s 
in(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), co 
s(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) 
 - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log( 
2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d 
*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d* 
x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + ( 
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*co 
s(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + 
 c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + 
c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sq 
rt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + 
c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x +...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 783 vs. \(2 (143) = 286\).

Time = 1.87 (sec) , antiderivative size = 783, normalized size of antiderivative = 4.63 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="giac")
 

Output:

1/48*(3*(8*A*sqrt(a)*sgn(cos(d*x + c)) + 5*C*sqrt(a)*sgn(cos(d*x + c)))*lo 
g(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^ 
2 - a*(2*sqrt(2) + 3))) - 3*(8*A*sqrt(a)*sgn(cos(d*x + c)) + 5*C*sqrt(a)*s 
gn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d 
*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(72*sqrt(2)*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A*a^(3/2)*sgn(cos 
(d*x + c)) + 63*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
 + 1/2*c)^2 + a))^10*C*a^(3/2)*sgn(cos(d*x + c)) - 888*sqrt(2)*(sqrt(a)*ta 
n(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a^(5/2)*sgn(c 
os(d*x + c)) - 369*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2* 
d*x + 1/2*c)^2 + a))^8*C*a^(5/2)*sgn(cos(d*x + c)) + 3024*sqrt(2)*(sqrt(a) 
*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^(7/2)*sg 
n(cos(d*x + c)) + 1638*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan( 
1/2*d*x + 1/2*c)^2 + a))^6*C*a^(7/2)*sgn(cos(d*x + c)) - 1776*sqrt(2)*(sqr 
t(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*a^(9/2 
)*sgn(cos(d*x + c)) - 1074*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a))^4*C*a^(9/2)*sgn(cos(d*x + c)) + 360*sqrt(2)*( 
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^( 
11/2)*sgn(cos(d*x + c)) + 171*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt 
(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^(11/2)*sgn(cos(d*x + c)) - 24*sqr...
 

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/ 
2),x)
 

Output:

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/ 
2), x)
 

Reduce [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*(A+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3,x)* 
c + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*a)