\(\int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [2]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 92 \[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 (7 A+4 C) \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{7 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C (b \sec (c+d x))^{4/3} \tan (c+d x)}{7 b d} \] Output:

3/7*(7*A+4*C)*hypergeom([-1/6, 1/2],[5/6],cos(d*x+c)^2)*(b*sec(d*x+c))^(1/ 
3)*sin(d*x+c)/d/(sin(d*x+c)^2)^(1/2)+3/7*C*(b*sec(d*x+c))^(4/3)*tan(d*x+c) 
/b/d
 

Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.87 \[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \cot (c+d x) (b \sec (c+d x))^{4/3} \left (4 C \tan ^2(c+d x)+(7 A+4 C) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},\sec ^2(c+d x)\right ) \sqrt {-\tan ^2(c+d x)}\right )}{28 b d} \] Input:

Integrate[Sec[c + d*x]*(b*Sec[c + d*x])^(1/3)*(A + C*Sec[c + d*x]^2),x]
 

Output:

(3*Cot[c + d*x]*(b*Sec[c + d*x])^(4/3)*(4*C*Tan[c + d*x]^2 + (7*A + 4*C)*H 
ypergeometric2F1[1/2, 2/3, 5/3, Sec[c + d*x]^2]*Sqrt[-Tan[c + d*x]^2]))/(2 
8*b*d)
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {2030, 3042, 4534, 3042, 4259, 3042, 3122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int (b \sec (c+d x))^{4/3} \left (C \sec ^2(c+d x)+A\right )dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{4/3} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx}{b}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {\frac {1}{7} (7 A+4 C) \int (b \sec (c+d x))^{4/3}dx+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{4/3}}{7 d}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} (7 A+4 C) \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{4/3}dx+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{4/3}}{7 d}}{b}\)

\(\Big \downarrow \) 4259

\(\displaystyle \frac {\frac {1}{7} (7 A+4 C) \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)} \int \frac {1}{\left (\frac {\cos (c+d x)}{b}\right )^{4/3}}dx+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{4/3}}{7 d}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} (7 A+4 C) \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)} \int \frac {1}{\left (\frac {\sin \left (c+d x+\frac {\pi }{2}\right )}{b}\right )^{4/3}}dx+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{4/3}}{7 d}}{b}\)

\(\Big \downarrow \) 3122

\(\displaystyle \frac {\frac {3 b (7 A+4 C) \sin (c+d x) \sqrt [3]{b \sec (c+d x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\cos ^2(c+d x)\right )}{7 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{4/3}}{7 d}}{b}\)

Input:

Int[Sec[c + d*x]*(b*Sec[c + d*x])^(1/3)*(A + C*Sec[c + d*x]^2),x]
 

Output:

((3*b*(7*A + 4*C)*Hypergeometric2F1[-1/6, 1/2, 5/6, Cos[c + d*x]^2]*(b*Sec 
[c + d*x])^(1/3)*Sin[c + d*x])/(7*d*Sqrt[Sin[c + d*x]^2]) + (3*C*(b*Sec[c 
+ d*x])^(4/3)*Tan[c + d*x])/(7*d))/b
 

Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3122
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2 
F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n}, x] 
 &&  !IntegerQ[2*n]
 

rule 4259
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^(n - 1)*((Sin[c + d*x]/b)^(n - 1)   Int[1/(Sin[c + d*x]/b)^n, x]), x] /; 
FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
Maple [F]

\[\int \sec \left (d x +c \right ) \left (b \sec \left (d x +c \right )\right )^{\frac {1}{3}} \left (A +C \sec \left (d x +c \right )^{2}\right )d x\]

Input:

int(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x)
 

Output:

int(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x)
 

Fricas [F]

\[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x, algorithm= 
"fricas")
 

Output:

integral((C*sec(d*x + c)^3 + A*sec(d*x + c))*(b*sec(d*x + c))^(1/3), x)
 

Sympy [F]

\[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt [3]{b \sec {\left (c + d x \right )}} \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \] Input:

integrate(sec(d*x+c)*(b*sec(d*x+c))**(1/3)*(A+C*sec(d*x+c)**2),x)
 

Output:

Integral((b*sec(c + d*x))**(1/3)*(A + C*sec(c + d*x)**2)*sec(c + d*x), x)
 

Maxima [F]

\[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x, algorithm= 
"maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(1/3)*sec(d*x + c), x)
 

Giac [F]

\[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x, algorithm= 
"giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(1/3)*sec(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}}{\cos \left (c+d\,x\right )} \,d x \] Input:

int(((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(1/3))/cos(c + d*x),x)
 

Output:

int(((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(1/3))/cos(c + d*x), x)
 

Reduce [F]

\[ \int \sec (c+d x) \sqrt [3]{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=b^{\frac {1}{3}} \left (\left (\int \sec \left (d x +c \right )^{\frac {10}{3}}d x \right ) c +\left (\int \sec \left (d x +c \right )^{\frac {4}{3}}d x \right ) a \right ) \] Input:

int(sec(d*x+c)*(b*sec(d*x+c))^(1/3)*(A+C*sec(d*x+c)^2),x)
 

Output:

b**(1/3)*(int(sec(c + d*x)**(1/3)*sec(c + d*x)**3,x)*c + int(sec(c + d*x)* 
*(1/3)*sec(c + d*x),x)*a)