\(\int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [281]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 136 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \] Output:

2^(1/2)*(A+C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a 
*sec(d*x+c))^(1/2))/a^(1/2)/d+2/3*A*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec 
(d*x+c))^(1/2)-2/3*A*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 0.95 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.91 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 A (-1+\cos (c+d x)) \sqrt {1-\sec (c+d x)}-3 \sqrt {2} (A+C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d* 
x]]),x]
 

Output:

((2*A*(-1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 3*Sqrt[2]*(A + C)*ArcTa 
n[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]]) 
*Tan[c + d*x])/(3*d*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a*(1 + 
Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 4575, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {2 \int -\frac {a A-a (2 A+3 C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a A-a (2 A+3 C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a A-a (2 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {6 a (A+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {3 \sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x 
]
 

Output:

(2*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((- 
3*Sqrt[2]*Sqrt[a]*(A + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x] 
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + (2*a*A*Sqrt[Sec[c + d*x]]*Sin[c 
 + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
Maple [A] (verified)

Time = 1.13 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.33

method result size
default \(-\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, A \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )+\sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, C \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )+A \left (-2 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(181\)
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \tan \left (d x +c \right )-2 \sin \left (d x +c \right )+\sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )}{d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(214\)

Input:

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/3/d/a*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*((-2/(co 
s(d*x+c)+1))^(1/2)*A*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d* 
x+c)+cot(d*x+c)))*(3+3*sec(d*x+c))+(-2/(cos(d*x+c)+1))^(1/2)*C*arctan(1/2* 
2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))*(3+3*sec(d*x+c 
))+A*(-2*sin(d*x+c)+2*tan(d*x+c)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.49 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + \frac {4 \, {\left (A \cos \left (d x + c\right )^{2} - A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - \frac {2 \, {\left (A \cos \left (d x + c\right )^{2} - A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="fricas")
 

Output:

[1/6*(3*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*log(-(cos(d*x + c)^2 
- 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin 
(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 
 1))/sqrt(a) + 4*(A*cos(d*x + c)^2 - A*cos(d*x + c))*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a* 
d), -1/3*(3*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*arctan 
(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + 
 c))/sin(d*x + c)) - 2*(A*cos(d*x + c)^2 - A*cos(d*x + c))*sqrt((a*cos(d*x 
 + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c 
) + a*d)]
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)* 
*(3/2)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (113) = 226\).

Time = 0.29 (sec) , antiderivative size = 373, normalized size of antiderivative = 2.74 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="maxima")
 

Output:

-1/6*((3*sqrt(2)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
)))*sin(3/2*d*x + 3/2*c) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2( 
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 
 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + 1) - 2*sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)* 
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A/sqrt(a) - 
3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/ 
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*C/sqrt(a))/d
 

Giac [A] (verification not implemented)

Time = 1.42 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.70 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {4 \, \sqrt {2} A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}} + \frac {3 \, \sqrt {2} {\left (A + C\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}}}{3 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="giac")
 

Output:

-1/3*(4*sqrt(2)*A*a*tan(1/2*d*x + 1/2*c)^3/(a*tan(1/2*d*x + 1/2*c)^2 + a)^ 
(3/2) + 3*sqrt(2)*(A + C)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*t 
an(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3 
/2)),x)
 

Output:

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3 
/2)), x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )+1}d x \right ) c \right )}{a} \] Input:

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**3 
 + sec(c + d*x)**2),x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)) 
/(sec(c + d*x) + 1),x)*c))/a