\(\int \frac {\sqrt {\sec (c+d x)} (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [291]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 154 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {(19 A+3 C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \] Output:

1/32*(19*A+3*C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a 
+a*sec(d*x+c))^(1/2))*2^(1/2)/a^(5/2)/d-1/4*(A+C)*sec(d*x+c)^(3/2)*sin(d*x 
+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(9*A-7*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/ 
d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 3.35 (sec) , antiderivative size = 308, normalized size of antiderivative = 2.00 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {(1+\sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {(9 A-7 C+(13 A-3 C) \cos (c+d x)) \sec ^5\left (\frac {1}{2} (c+d x)\right ) \sqrt {1+\sec (c+d x)} \left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )}{\sec ^{\frac {3}{2}}(c+d x)}+\sqrt {2} (19 A+3 C) \cos ^2(c+d x) \cot (c+d x) \left (\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)-2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {\tan ^2(c+d x)}\right )-\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)+2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {\tan ^2(c+d x)}\right )\right ) \sqrt {\tan ^2(c+d x)}\right )}{64 d (A+2 C+A \cos (2 (c+d x))) (a (1+\sec (c+d x)))^{5/2}} \] Input:

Integrate[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]) 
^(5/2),x]
 

Output:

((1 + Sec[c + d*x])^(5/2)*(A + C*Sec[c + d*x]^2)*(((9*A - 7*C + (13*A - 3* 
C)*Cos[c + d*x])*Sec[(c + d*x)/2]^5*Sqrt[1 + Sec[c + d*x]]*(Sin[(c + d*x)/ 
2] - Sin[(3*(c + d*x))/2]))/Sec[c + d*x]^(3/2) + Sqrt[2]*(19*A + 3*C)*Cos[ 
c + d*x]^2*Cot[c + d*x]*(Log[1 - 2*Sec[c + d*x] - 3*Sec[c + d*x]^2 - 2*Sqr 
t[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*Sqrt[Tan[c + d*x]^2]] - Log 
[1 - 2*Sec[c + d*x] - 3*Sec[c + d*x]^2 + 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt 
[1 + Sec[c + d*x]]*Sqrt[Tan[c + d*x]^2]])*Sqrt[Tan[c + d*x]^2]))/(64*d*(A 
+ 2*C + A*Cos[2*(c + d*x)])*(a*(1 + Sec[c + d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 4573, 27, 3042, 4500, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle -\frac {\int -\frac {\sqrt {\sec (c+d x)} (a (7 A-C)-2 a (A-3 C) \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x)} (a (7 A-C)-2 a (A-3 C) \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a (7 A-C)-2 a (A-3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4500

\(\displaystyle \frac {\frac {1}{4} (19 A+3 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} (19 A+3 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {-\frac {(19 A+3 C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 d}-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {(19 A+3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

Input:

Int[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2) 
,x]
 

Output:

-1/4*((A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/ 
2)) + (((19*A + 3*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sq 
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*Sqrt[a]*d) - (a*(9*A - 7*C)*S 
ec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4500
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] + Simp[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1))   Int[(a + b*Csc[e + 
 f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n} 
, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LeQ[ 
m, -1]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(260\) vs. \(2(129)=258\).

Time = 2.00 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.69

method result size
default \(\frac {\left (\left (19 \cos \left (d x +c \right )^{2}+38 \cos \left (d x +c \right )+19\right ) A \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (3 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+3\right ) C \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (-13 \cos \left (d x +c \right )-9\right ) \sin \left (d x +c \right ) A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}+\left (3 \cos \left (d x +c \right )+7\right ) \sin \left (d x +c \right ) C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {2}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(261\)
parts \(-\frac {A \left (\left (-19 \cos \left (d x +c \right )^{2}-38 \cos \left (d x +c \right )-19\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (13 \cos \left (d x +c \right )+9\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}}{32 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C \left (\left (3 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+3\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (3 \cos \left (d x +c \right )+7\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right )^{3} \sqrt {2}\, \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(344\)

Input:

int(sec(d*x+c)^(1/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/32/d/a^3*((19*cos(d*x+c)^2+38*cos(d*x+c)+19)*A*arctan(1/2*2^(1/2)/(-1/(c 
os(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))+(3*cos(d*x+c)^2+6*cos(d*x+c) 
+3)*C*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c) 
))+(-13*cos(d*x+c)-9)*sin(d*x+c)*A*(-2/(cos(d*x+c)+1))^(1/2)+(3*cos(d*x+c) 
+7)*sin(d*x+c)*C*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*sec(d*x+c)^(1/2)*2^ 
(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)^3+3*cos(d*x+c)^2+3*cos(d*x+c)+1 
)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 502, normalized size of antiderivative = 3.26 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(1/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, al 
gorithm="fricas")
 

Output:

[1/64*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^ 
2 + 3*(19*A + 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(a)*log(-(a*cos(d*x + c) 
^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d* 
x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x 
 + c) + 1)) - 4*((13*A - 3*C)*cos(d*x + c)^2 + (9*A - 7*C)*cos(d*x + c))*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a 
^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3* 
d), -1/32*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + 
 c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(-a)*arctan(sqrt(2)* 
sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin 
(d*x + c))) + 2*((13*A - 3*C)*cos(d*x + c)^2 + (9*A - 7*C)*cos(d*x + c))*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a 
^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3* 
d)]
 

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**(1/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)*sqrt(sec(c + d*x))/(a*(sec(c + d*x) + 1)) 
**(5/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 87381 vs. \(2 (129) = 258\).

Time = 14.78 (sec) , antiderivative size = 87381, normalized size of antiderivative = 567.41 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, al 
gorithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/32*((19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 
 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos( 
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1)) 
*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2* 
c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2* 
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(lo 
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
 + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d* 
x + 1/2*c) + 1))*cos(d*x + c)^2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2 
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^ 
2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2 
*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/ 
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/ 
2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*s 
in(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c) 
^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2...
 

Giac [A] (verification not implemented)

Time = 2.26 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} + C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8}} - \frac {\sqrt {2} {\left (11 \, A a^{5} - 5 \, C a^{5}\right )}}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {\sqrt {2} {\left (19 \, A + 3 \, C\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {5}{2}}}}{32 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, al 
gorithm="giac")
 

Output:

1/32*(sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 + C*a^5)*tan(1/ 
2*d*x + 1/2*c)^2/a^8 - sqrt(2)*(11*A*a^5 - 5*C*a^5)/a^8)*tan(1/2*d*x + 1/2 
*c) - sqrt(2)*(19*A + 3*C)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a)))/a^(5/2))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^( 
5/2),x)
 

Output:

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^( 
5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{3}} \] Input:

int(sec(d*x+c)^(1/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2)/ 
(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1),x)*c + int((sqr 
t(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**3 + 3*sec(c + d*x)* 
*2 + 3*sec(c + d*x) + 1),x)*a))/a**3