\(\int \cos (c+d x) (a+a \sec (c+d x))^3 (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [325]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 111 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^3 B x+\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d} \] Output:

a^3*B*x+1/2*a^3*(7*B+5*C)*arctanh(sin(d*x+c))/d+5/2*a^3*(B+C)*tan(d*x+c)/d 
+1/3*a*C*(a+a*sec(d*x+c))^2*tan(d*x+c)/d+1/6*(3*B+5*C)*(a^3+a^3*sec(d*x+c) 
)*tan(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.02 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.95 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^3 \left (B x+\frac {(3 B+C) \coth ^{-1}(\sin (c+d x))}{d}+\frac {(B+3 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {3 (B+C) \tan (c+d x)}{d}+\frac {(B+3 C) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {C \left (3 \tan (c+d x)+\tan ^3(c+d x)\right )}{3 d}\right ) \] Input:

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(B*Sec[c + d*x] + C*Sec[c + 
d*x]^2),x]
 

Output:

a^3*(B*x + ((3*B + C)*ArcCoth[Sin[c + d*x]])/d + ((B + 3*C)*ArcTanh[Sin[c 
+ d*x]])/(2*d) + (3*(B + C)*Tan[c + d*x])/d + ((B + 3*C)*Sec[c + d*x]*Tan[ 
c + d*x])/(2*d) + (C*(3*Tan[c + d*x] + Tan[c + d*x]^3))/(3*d))
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.342, Rules used = {3042, 4560, 3042, 4405, 3042, 4405, 27, 3042, 4402, 3042, 4254, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) (a \sec (c+d x)+a)^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int (a \sec (c+d x)+a)^3 (B+C \sec (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (B+C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4405

\(\displaystyle \frac {1}{3} \int (\sec (c+d x) a+a)^2 (3 a B+a (3 B+5 C) \sec (c+d x))dx+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (3 a B+a (3 B+5 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 4405

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \int 3 (\sec (c+d x) a+a) \left (2 B a^2+5 (B+C) \sec (c+d x) a^2\right )dx+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \int (\sec (c+d x) a+a) \left (2 B a^2+5 (B+C) \sec (c+d x) a^2\right )dx+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \int \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (2 B a^2+5 (B+C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 4402

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \left (5 a^3 (B+C) \int \sec ^2(c+d x)dx+a^3 (7 B+5 C) \int \sec (c+d x)dx+2 a^3 B x\right )+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \left (a^3 (7 B+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+5 a^3 (B+C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+2 a^3 B x\right )+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \left (-\frac {5 a^3 (B+C) \int 1d(-\tan (c+d x))}{d}+a^3 (7 B+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+2 a^3 B x\right )+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \left (a^3 (7 B+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {5 a^3 (B+C) \tan (c+d x)}{d}+2 a^3 B x\right )+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{3} \left (\frac {3}{2} \left (\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {5 a^3 (B+C) \tan (c+d x)}{d}+2 a^3 B x\right )+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{2 d}\right )+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d}\)

Input:

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(B*Sec[c + d*x] + C*Sec[c + d*x]^2 
),x]
 

Output:

(a*C*(a + a*Sec[c + d*x])^2*Tan[c + d*x])/(3*d) + (((3*B + 5*C)*(a^3 + a^3 
*Sec[c + d*x])*Tan[c + d*x])/(2*d) + (3*(2*a^3*B*x + (a^3*(7*B + 5*C)*ArcT 
anh[Sin[c + d*x]])/d + (5*a^3*(B + C)*Tan[c + d*x])/d))/2)/3
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4402
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + 
 (c_)), x_Symbol] :> Simp[a*c*x, x] + (Simp[b*d   Int[Csc[e + f*x]^2, x], x 
] + Simp[(b*c + a*d)   Int[Csc[e + f*x], x], x]) /; FreeQ[{a, b, c, d, e, f 
}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]
 

rule 4405
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[(-b)*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m 
 - 1)/(f*m)), x] + Simp[1/m   Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m + 
 (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2 
*m]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.55

method result size
parallelrisch \(\frac {\left (-\frac {21 \left (B +\frac {5 C}{7}\right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {21 \left (B +\frac {5 C}{7}\right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+B x d \cos \left (3 d x +3 c \right )+\left (B +3 C \right ) \sin \left (2 d x +2 c \right )+\left (3 B +\frac {11 C}{3}\right ) \sin \left (3 d x +3 c \right )+3 B x d \cos \left (d x +c \right )+3 \sin \left (d x +c \right ) \left (B +\frac {5 C}{3}\right )\right ) a^{3}}{d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(172\)
derivativedivides \(\frac {B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{3} C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \tan \left (d x +c \right )+3 a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} C \tan \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(176\)
default \(\frac {B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{3} C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \tan \left (d x +c \right )+3 a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} C \tan \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(176\)
risch \(a^{3} B x -\frac {i a^{3} \left (3 B \,{\mathrm e}^{5 i \left (d x +c \right )}+9 C \,{\mathrm e}^{5 i \left (d x +c \right )}-18 B \,{\mathrm e}^{4 i \left (d x +c \right )}-18 C \,{\mathrm e}^{4 i \left (d x +c \right )}-36 B \,{\mathrm e}^{2 i \left (d x +c \right )}-48 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}-9 C \,{\mathrm e}^{i \left (d x +c \right )}-18 B -22 C \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 d}-\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 d}+\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}\) \(221\)
norman \(\frac {a^{3} B x +a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\frac {a^{3} \left (7 B +11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-3 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+2 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-3 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-\frac {2 a^{3} \left (B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {4 a^{3} \left (9 B +10 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}+\frac {4 a^{3} \left (9 B +10 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {5 a^{3} \left (C +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {a^{3} \left (7 B +5 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{3} \left (7 B +5 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(304\)

Input:

int(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_ 
RETURNVERBOSE)
 

Output:

(-21/2*(B+5/7*C)*(1/3*cos(3*d*x+3*c)+cos(d*x+c))*ln(tan(1/2*d*x+1/2*c)-1)+ 
21/2*(B+5/7*C)*(1/3*cos(3*d*x+3*c)+cos(d*x+c))*ln(tan(1/2*d*x+1/2*c)+1)+B* 
x*d*cos(3*d*x+3*c)+(B+3*C)*sin(2*d*x+2*c)+(3*B+11/3*C)*sin(3*d*x+3*c)+3*B* 
x*d*cos(d*x+c)+3*sin(d*x+c)*(B+5/3*C))*a^3/d/(cos(3*d*x+3*c)+3*cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.27 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, B a^{3} d x \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, B + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (7 \, B + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (9 \, B + 11 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 3 \, {\left (B + 3 \, C\right )} a^{3} \cos \left (d x + c\right ) + 2 \, C a^{3}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="fricas")
 

Output:

1/12*(12*B*a^3*d*x*cos(d*x + c)^3 + 3*(7*B + 5*C)*a^3*cos(d*x + c)^3*log(s 
in(d*x + c) + 1) - 3*(7*B + 5*C)*a^3*cos(d*x + c)^3*log(-sin(d*x + c) + 1) 
 + 2*(2*(9*B + 11*C)*a^3*cos(d*x + c)^2 + 3*(B + 3*C)*a^3*cos(d*x + c) + 2 
*C*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3)
 

Sympy [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^{3} \left (\int B \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 3 B \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**3*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)
 

Output:

a**3*(Integral(B*cos(c + d*x)*sec(c + d*x), x) + Integral(3*B*cos(c + d*x) 
*sec(c + d*x)**2, x) + Integral(3*B*cos(c + d*x)*sec(c + d*x)**3, x) + Int 
egral(B*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(C*cos(c + d*x)*sec(c + 
 d*x)**2, x) + Integral(3*C*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(3* 
C*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(C*cos(c + d*x)*sec(c + d*x)* 
*5, x))
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 212 vs. \(2 (103) = 206\).

Time = 0.05 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.91 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, {\left (d x + c\right )} B a^{3} + 4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{3} - 3 \, B a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 9 \, C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, B a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 36 \, B a^{3} \tan \left (d x + c\right ) + 36 \, C a^{3} \tan \left (d x + c\right )}{12 \, d} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="maxima")
 

Output:

1/12*(12*(d*x + c)*B*a^3 + 4*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a^3 - 3*B 
*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(si 
n(d*x + c) - 1)) - 9*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) + 18*B*a^3*(log(sin(d*x + c) + 1) - 
 log(sin(d*x + c) - 1)) + 6*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c 
) - 1)) + 36*B*a^3*tan(d*x + c) + 36*C*a^3*tan(d*x + c))/d
 

Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.70 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {6 \, {\left (d x + c\right )} B a^{3} + 3 \, {\left (7 \, B a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (7 \, B a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (15 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 36 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 21 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 33 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, a 
lgorithm="giac")
 

Output:

1/6*(6*(d*x + c)*B*a^3 + 3*(7*B*a^3 + 5*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c 
) + 1)) - 3*(7*B*a^3 + 5*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(15 
*B*a^3*tan(1/2*d*x + 1/2*c)^5 + 15*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 36*B*a^3 
*tan(1/2*d*x + 1/2*c)^3 - 40*C*a^3*tan(1/2*d*x + 1/2*c)^3 + 21*B*a^3*tan(1 
/2*d*x + 1/2*c) + 33*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 
 1)^3)/d
 

Mupad [B] (verification not implemented)

Time = 11.86 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.88 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,B\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {7\,B\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {5\,C\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {3\,B\,a^3\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {B\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {11\,C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,\cos \left (c+d\,x\right )}+\frac {3\,C\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,{\cos \left (c+d\,x\right )}^3} \] Input:

int(cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^ 
3,x)
 

Output:

(2*B*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (7*B*a^3*atanh(s 
in(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (5*C*a^3*atanh(sin(c/2 + (d*x)/ 
2)/cos(c/2 + (d*x)/2)))/d + (3*B*a^3*sin(c + d*x))/(d*cos(c + d*x)) + (B*a 
^3*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (11*C*a^3*sin(c + d*x))/(3*d*cos(c 
 + d*x)) + (3*C*a^3*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (C*a^3*sin(c + d* 
x))/(3*d*cos(c + d*x)^3)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 329, normalized size of antiderivative = 2.96 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3} \left (-21 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} b -15 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} c +21 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) b +15 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) c +21 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} b +15 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} c -21 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) b -15 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) c +6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b d x -3 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -9 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c -6 \cos \left (d x +c \right ) b d x +18 \sin \left (d x +c \right )^{3} b +22 \sin \left (d x +c \right )^{3} c -18 \sin \left (d x +c \right ) b -24 \sin \left (d x +c \right ) c \right )}{6 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

(a**3*( - 21*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*b - 15 
*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*c + 21*cos(c + d*x 
)*log(tan((c + d*x)/2) - 1)*b + 15*cos(c + d*x)*log(tan((c + d*x)/2) - 1)* 
c + 21*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*b + 15*cos(c 
 + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*c - 21*cos(c + d*x)*log( 
tan((c + d*x)/2) + 1)*b - 15*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*c + 6* 
cos(c + d*x)*sin(c + d*x)**2*b*d*x - 3*cos(c + d*x)*sin(c + d*x)*b - 9*cos 
(c + d*x)*sin(c + d*x)*c - 6*cos(c + d*x)*b*d*x + 18*sin(c + d*x)**3*b + 2 
2*sin(c + d*x)**3*c - 18*sin(c + d*x)*b - 24*sin(c + d*x)*c))/(6*cos(c + d 
*x)*d*(sin(c + d*x)**2 - 1))