\(\int \frac {\cos (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [389]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 91 \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 B \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (B-C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d} \] Output:

2*B*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d-2^(1/2)*(B 
-C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/ 
d
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.01 \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 \left (\sqrt {2} B \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+(-B+C) \arctan \left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Se 
c[c + d*x]],x]
 

Output:

(2*(Sqrt[2]*B*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + (-B + C)*ArcTan[Sin[(c + 
d*x)/2]/Sqrt[Cos[c + d*x]]])*Cos[(c + d*x)/2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[ 
a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {3042, 4560, 3042, 4408, 3042, 4261, 216, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int \frac {B+C \sec (c+d x)}{\sqrt {a \sec (c+d x)+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4408

\(\displaystyle \frac {B \int \sqrt {\sec (c+d x) a+a}dx}{a}-(B-C) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}-(B-C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4261

\(\displaystyle -\frac {2 B \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\left ((B-C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 B \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-(B-C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {2 (B-C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 B \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 B \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (B-C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}\)

Input:

Int[(Cos[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + 
d*x]],x]
 

Output:

(2*B*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) 
- (Sqrt[2]*(B - C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c 
 + d*x]])])/(Sqrt[a]*d)
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4408
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c/a   Int[Sqrt[a + b*Csc[e + f*x]], x], x] - 
Simp[(b*c - a*d)/a   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(167\) vs. \(2(76)=152\).

Time = 0.57 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.85

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (B \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )-B \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+C \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{d a}\) \(168\)

Input:

int(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,meth 
od=_RETURNVERBOSE)
 

Output:

1/d/a*(a*(1+sec(d*x+c)))^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(B*2^( 
1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-c 
ot(d*x+c)))-B*ln((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c 
))+C*ln((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c)))
 

Fricas [A] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 307, normalized size of antiderivative = 3.37 \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\sqrt {2} {\left (B - C\right )} a \sqrt {-\frac {1}{a}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 2 \, B \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{2 \, a d}, \frac {\sqrt {2} {\left (B - C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, B \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{a d}\right ] \] Input:

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2), 
x, algorithm="fricas")
 

Output:

[-1/2*(sqrt(2)*(B - C)*a*sqrt(-1/a)*log(-(2*sqrt(2)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) - 3*cos(d*x + c)^2 
- 2*cos(d*x + c) + 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 2*B*sqrt(-a 
)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/ 
(a*d), (sqrt(2)*(B - C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/c 
os(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*B*sqrt(a)*arctan(sqr 
t((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))) 
/(a*d)]
 

Sympy [F]

\[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2 
),x)
 

Output:

Integral((B + C*sec(c + d*x))*cos(c + d*x)*sec(c + d*x)/sqrt(a*(sec(c + d* 
x) + 1)), x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.43 (sec) , antiderivative size = 699, normalized size of antiderivative = 7.68 \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2), 
x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-(sqrt(2)*sqrt(a)*arctan2(((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c) 
^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + 
c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c 
)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x 
+ c) + 16)^(1/4)*sin(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e 
^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 
4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2* 
sin(d*x + c))/abs(2*e^(I*d*x + I*c) + 2), ((abs(2*e^(I*d*x + I*c) + 2)^4 + 
 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^ 
2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 
 32*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c) 
^2 - 64*cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) - 1)*sin( 
d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*c 
os(d*x + c)^2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I* 
c) + 2)^2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) - sqrt(a)*ar 
ctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^( 
1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + 
c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/ 
4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c) 
))*B/(a*d)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2), 
x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x) 
)^(1/2),x)
 

Output:

int((cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x) 
)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cos (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) b \right )}{a} \] Input:

int(cos(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**2)/(sec(c 
 + d*x) + 1),x)*c + int((sqrt(sec(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)) 
/(sec(c + d*x) + 1),x)*b))/a