\(\int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} (A+C \sec ^2(c+d x)) \, dx\) [21]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 146 \[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 b C \sec ^{2+m}(c+d x) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d (7+3 m)}+\frac {3 b (C (4+3 m)+A (7+3 m)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{6} (-1-3 m),\frac {1}{6} (5-3 m),\cos ^2(c+d x)\right ) \sec ^m(c+d x) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d (1+3 m) (7+3 m) \sqrt {\sin ^2(c+d x)}} \] Output:

3*b*C*sec(d*x+c)^(2+m)*(b*sec(d*x+c))^(1/3)*sin(d*x+c)/d/(7+3*m)+3*b*(C*(4 
+3*m)+A*(7+3*m))*hypergeom([1/2, -1/6-1/2*m],[5/6-1/2*m],cos(d*x+c)^2)*sec 
(d*x+c)^m*(b*sec(d*x+c))^(1/3)*sin(d*x+c)/d/(1+3*m)/(7+3*m)/(sin(d*x+c)^2) 
^(1/2)
 

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.98 \[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 b \csc (c+d x) \sec ^m(c+d x) \sqrt [3]{b \sec (c+d x)} \left (A (10+3 m) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{6} (4+3 m),\frac {5}{3}+\frac {m}{2},\sec ^2(c+d x)\right )+C (4+3 m) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{3}+\frac {m}{2},\frac {8}{3}+\frac {m}{2},\sec ^2(c+d x)\right ) \sec ^2(c+d x)\right ) \sqrt {-\tan ^2(c+d x)}}{d (4+3 m) (10+3 m)} \] Input:

Integrate[Sec[c + d*x]^m*(b*Sec[c + d*x])^(4/3)*(A + C*Sec[c + d*x]^2),x]
 

Output:

(3*b*Csc[c + d*x]*Sec[c + d*x]^m*(b*Sec[c + d*x])^(1/3)*(A*(10 + 3*m)*Hype 
rgeometric2F1[1/2, (4 + 3*m)/6, 5/3 + m/2, Sec[c + d*x]^2] + C*(4 + 3*m)*H 
ypergeometric2F1[1/2, 5/3 + m/2, 8/3 + m/2, Sec[c + d*x]^2]*Sec[c + d*x]^2 
)*Sqrt[-Tan[c + d*x]^2])/(d*(4 + 3*m)*(10 + 3*m))
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {2034, 3042, 4534, 3042, 4259, 3042, 3122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \sec (c+d x))^{4/3} \sec ^m(c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 2034

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \int \sec ^{m+\frac {4}{3}}(c+d x) \left (C \sec ^2(c+d x)+A\right )dx}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{m+\frac {4}{3}} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \left (\frac {(A (3 m+7)+C (3 m+4)) \int \sec ^{m+\frac {4}{3}}(c+d x)dx}{3 m+7}+\frac {3 C \sin (c+d x) \sec ^{m+\frac {7}{3}}(c+d x)}{d (3 m+7)}\right )}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \left (\frac {(A (3 m+7)+C (3 m+4)) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{m+\frac {4}{3}}dx}{3 m+7}+\frac {3 C \sin (c+d x) \sec ^{m+\frac {7}{3}}(c+d x)}{d (3 m+7)}\right )}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 4259

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \left (\frac {(A (3 m+7)+C (3 m+4)) \cos ^{m+\frac {1}{3}}(c+d x) \sec ^{m+\frac {1}{3}}(c+d x) \int \cos ^{-m-\frac {4}{3}}(c+d x)dx}{3 m+7}+\frac {3 C \sin (c+d x) \sec ^{m+\frac {7}{3}}(c+d x)}{d (3 m+7)}\right )}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \left (\frac {(A (3 m+7)+C (3 m+4)) \cos ^{m+\frac {1}{3}}(c+d x) \sec ^{m+\frac {1}{3}}(c+d x) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{-m-\frac {4}{3}}dx}{3 m+7}+\frac {3 C \sin (c+d x) \sec ^{m+\frac {7}{3}}(c+d x)}{d (3 m+7)}\right )}{\sqrt [3]{\sec (c+d x)}}\)

\(\Big \downarrow \) 3122

\(\displaystyle \frac {b \sqrt [3]{b \sec (c+d x)} \left (\frac {3 (A (3 m+7)+C (3 m+4)) \sin (c+d x) \sec ^{m+\frac {1}{3}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{6} (-3 m-1),\frac {1}{6} (5-3 m),\cos ^2(c+d x)\right )}{d (3 m+1) (3 m+7) \sqrt {\sin ^2(c+d x)}}+\frac {3 C \sin (c+d x) \sec ^{m+\frac {7}{3}}(c+d x)}{d (3 m+7)}\right )}{\sqrt [3]{\sec (c+d x)}}\)

Input:

Int[Sec[c + d*x]^m*(b*Sec[c + d*x])^(4/3)*(A + C*Sec[c + d*x]^2),x]
 

Output:

(b*(b*Sec[c + d*x])^(1/3)*((3*C*Sec[c + d*x]^(7/3 + m)*Sin[c + d*x])/(d*(7 
 + 3*m)) + (3*(C*(4 + 3*m) + A*(7 + 3*m))*Hypergeometric2F1[1/2, (-1 - 3*m 
)/6, (5 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(1/3 + m)*Sin[c + d*x])/(d* 
(1 + 3*m)*(7 + 3*m)*Sqrt[Sin[c + d*x]^2])))/Sec[c + d*x]^(1/3)
 

Defintions of rubi rules used

rule 2034
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[b^IntPart 
[n]*((b*v)^FracPart[n]/(a^IntPart[n]*(a*v)^FracPart[n]))   Int[(a*v)^(m + n 
)*Fx, x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && 
  !IntegerQ[m + n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3122
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2 
F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n}, x] 
 &&  !IntegerQ[2*n]
 

rule 4259
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^(n - 1)*((Sin[c + d*x]/b)^(n - 1)   Int[1/(Sin[c + d*x]/b)^n, x]), x] /; 
FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
Maple [F]

\[\int \sec \left (d x +c \right )^{m} \left (b \sec \left (d x +c \right )\right )^{\frac {4}{3}} \left (A +C \sec \left (d x +c \right )^{2}\right )d x\]

Input:

int(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x)
 

Output:

int(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x)
 

Fricas [F]

\[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}} \sec \left (d x + c\right )^{m} \,d x } \] Input:

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

integral((C*b*sec(d*x + c)^3 + A*b*sec(d*x + c))*(b*sec(d*x + c))^(1/3)*se 
c(d*x + c)^m, x)
 

Sympy [F(-1)]

Timed out. \[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**m*(b*sec(d*x+c))**(4/3)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}} \sec \left (d x + c\right )^{m} \,d x } \] Input:

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(4/3)*sec(d*x + c)^m, x)
 

Giac [F]

\[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}} \sec \left (d x + c\right )^{m} \,d x } \] Input:

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(4/3)*sec(d*x + c)^m, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{4/3}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^m \,d x \] Input:

int((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(4/3)*(1/cos(c + d*x))^m,x)
 

Output:

int((A + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(4/3)*(1/cos(c + d*x))^m, x)
 

Reduce [F]

\[ \int \sec ^m(c+d x) (b \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=b^{\frac {4}{3}} \left (\left (\int \sec \left (d x +c \right )^{m +\frac {1}{3}} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sec \left (d x +c \right )^{m +\frac {1}{3}} \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int(sec(d*x+c)^m*(b*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x)
 

Output:

b**(1/3)*b*(int(sec(c + d*x)**((3*m + 1)/3)*sec(c + d*x)**3,x)*c + int(sec 
(c + d*x)**((3*m + 1)/3)*sec(c + d*x),x)*a)