\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^4} \, dx\) [477]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 148 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {(23 A-2 B-54 C) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}+\frac {(8 A+13 B+36 C) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(6 A+B-8 C) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3} \] Output:

1/105*(23*A-2*B-54*C)*tan(d*x+c)/a^4/d/(1+sec(d*x+c))^2+1/105*(8*A+13*B+36 
*C)*tan(d*x+c)/a^4/d/(1+sec(d*x+c))-1/7*(A-B+C)*sec(d*x+c)^2*tan(d*x+c)/d/ 
(a+a*sec(d*x+c))^4-1/35*(6*A+B-8*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3
 

Mathematica [A] (verified)

Time = 1.89 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.35 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (70 (4 A+2 B+3 C) \sin \left (\frac {d x}{2}\right )-35 (5 A+4 B) \sin \left (c+\frac {d x}{2}\right )+168 A \sin \left (c+\frac {3 d x}{2}\right )+168 B \sin \left (c+\frac {3 d x}{2}\right )+126 C \sin \left (c+\frac {3 d x}{2}\right )-105 A \sin \left (2 c+\frac {3 d x}{2}\right )+91 A \sin \left (2 c+\frac {5 d x}{2}\right )+56 B \sin \left (2 c+\frac {5 d x}{2}\right )+42 C \sin \left (2 c+\frac {5 d x}{2}\right )+13 A \sin \left (3 c+\frac {7 d x}{2}\right )+8 B \sin \left (3 c+\frac {7 d x}{2}\right )+6 C \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{6720 a^4 d} \] Input:

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a* 
Sec[c + d*x])^4,x]
 

Output:

(Sec[c/2]*Sec[(c + d*x)/2]^7*(70*(4*A + 2*B + 3*C)*Sin[(d*x)/2] - 35*(5*A 
+ 4*B)*Sin[c + (d*x)/2] + 168*A*Sin[c + (3*d*x)/2] + 168*B*Sin[c + (3*d*x) 
/2] + 126*C*Sin[c + (3*d*x)/2] - 105*A*Sin[2*c + (3*d*x)/2] + 91*A*Sin[2*c 
 + (5*d*x)/2] + 56*B*Sin[2*c + (5*d*x)/2] + 42*C*Sin[2*c + (5*d*x)/2] + 13 
*A*Sin[3*c + (7*d*x)/2] + 8*B*Sin[3*c + (7*d*x)/2] + 6*C*Sin[3*c + (7*d*x) 
/2]))/(6720*a^4*d)
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.220, Rules used = {3042, 4572, 3042, 4496, 25, 3042, 4488, 3042, 4281}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 4572

\(\displaystyle \frac {\int \frac {\sec ^2(c+d x) (a (5 A+2 B-2 C)-a (A-B-6 C) \sec (c+d x))}{(\sec (c+d x) a+a)^3}dx}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a (5 A+2 B-2 C)-a (A-B-6 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4496

\(\displaystyle \frac {-\frac {\int -\frac {\sec (c+d x) \left (3 a^2 (6 A+B-8 C)-5 a^2 (A-B-6 C) \sec (c+d x)\right )}{(\sec (c+d x) a+a)^2}dx}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left (3 a^2 (6 A+B-8 C)-5 a^2 (A-B-6 C) \sec (c+d x)\right )}{(\sec (c+d x) a+a)^2}dx}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 a^2 (6 A+B-8 C)-5 a^2 (A-B-6 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4488

\(\displaystyle \frac {\frac {\frac {1}{3} a (8 A+13 B+36 C) \int \frac {\sec (c+d x)}{\sec (c+d x) a+a}dx+\frac {(23 A-2 B-54 C) \tan (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {1}{3} a (8 A+13 B+36 C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {(23 A-2 B-54 C) \tan (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4281

\(\displaystyle \frac {\frac {\frac {a (8 A+13 B+36 C) \tan (c+d x)}{3 d (a \sec (c+d x)+a)}+\frac {(23 A-2 B-54 C) \tan (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {a (6 A+B-8 C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

Input:

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c 
+ d*x])^4,x]
 

Output:

-1/7*((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^4) 
+ (-1/5*(a*(6*A + B - 8*C)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^3) + (((2 
3*A - 2*B - 54*C)*Tan[c + d*x])/(3*d*(1 + Sec[c + d*x])^2) + (a*(8*A + 13* 
B + 36*C)*Tan[c + d*x])/(3*d*(a + a*Sec[c + d*x])))/(5*a^2))/(7*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4281
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[-Cot[e + f*x]/(f*(b + a*Csc[e + f*x])), x] /; FreeQ[{a, b, e, f} 
, x] && EqQ[a^2 - b^2, 0]
 

rule 4488
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - a*B)*Cot[e + 
f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[(a*B*m + A*b*(m + 
1))/(a*b*(2*m + 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] 
 /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]
 

rule 4496
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot 
[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(b^2*(2*m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b 
*B*(2*m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && Ne 
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4572
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*Csc[e 
+ f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) 
   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - 
 A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.64

method result size
parallelrisch \(\frac {13 \left (8 \left (A +\frac {8 B}{13}+\frac {6 C}{13}\right ) \cos \left (2 d x +2 c \right )+\left (A +\frac {8 B}{13}+\frac {6 C}{13}\right ) \cos \left (3 d x +3 c \right )+\frac {\left (167 A +232 B +174 C \right ) \cos \left (d x +c \right )}{13}+\frac {136 A}{13}+\frac {116 B}{13}+\frac {192 C}{13}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{3360 a^{4} d}\) \(94\)
derivativedivides \(\frac {\frac {\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {\left (-A +3 C -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {\left (-A +B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(106\)
default \(\frac {\frac {\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {\left (-A +3 C -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {\left (-A +B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(106\)
risch \(\frac {2 i \left (105 A \,{\mathrm e}^{5 i \left (d x +c \right )}+175 A \,{\mathrm e}^{4 i \left (d x +c \right )}+140 B \,{\mathrm e}^{4 i \left (d x +c \right )}+280 A \,{\mathrm e}^{3 i \left (d x +c \right )}+140 B \,{\mathrm e}^{3 i \left (d x +c \right )}+210 C \,{\mathrm e}^{3 i \left (d x +c \right )}+168 A \,{\mathrm e}^{2 i \left (d x +c \right )}+168 B \,{\mathrm e}^{2 i \left (d x +c \right )}+126 C \,{\mathrm e}^{2 i \left (d x +c \right )}+91 A \,{\mathrm e}^{i \left (d x +c \right )}+56 B \,{\mathrm e}^{i \left (d x +c \right )}+42 C \,{\mathrm e}^{i \left (d x +c \right )}+13 A +8 B +6 C \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(177\)
norman \(\frac {\frac {\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{56 a d}-\frac {\left (A +B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {\left (5 A +4 B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 a d}+\frac {\left (11 A -4 B -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{70 a d}-\frac {\left (11 A -4 B -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{140 a d}-\frac {\left (19 A +9 B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{40 a d}+\frac {\left (73 A +53 B -39 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{840 a d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3} a^{3}}\) \(212\)

Input:

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x,meth 
od=_RETURNVERBOSE)
 

Output:

13/3360*(8*(A+8/13*B+6/13*C)*cos(2*d*x+2*c)+(A+8/13*B+6/13*C)*cos(3*d*x+3* 
c)+1/13*(167*A+232*B+174*C)*cos(d*x+c)+136/13*A+116/13*B+192/13*C)*tan(1/2 
*d*x+1/2*c)*sec(1/2*d*x+1/2*c)^6/a^4/d
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.91 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {{\left ({\left (13 \, A + 8 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (13 \, A + 8 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (32 \, A + 52 \, B + 39 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 13 \, B + 36 \, C\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4, 
x, algorithm="fricas")
 

Output:

1/105*((13*A + 8*B + 6*C)*cos(d*x + c)^3 + 4*(13*A + 8*B + 6*C)*cos(d*x + 
c)^2 + (32*A + 52*B + 39*C)*cos(d*x + c) + 8*A + 13*B + 36*C)*sin(d*x + c) 
/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 
 4*a^4*d*cos(d*x + c) + a^4*d)
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\int \frac {A \sec ^{2}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{3}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{4}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \] Input:

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))* 
*4,x)
 

Output:

(Integral(A*sec(c + d*x)**2/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c 
 + d*x)**2 + 4*sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)**3/(sec(c + 
 d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x) 
 + Integral(C*sec(c + d*x)**4/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec 
(c + d*x)**2 + 4*sec(c + d*x) + 1), x))/a**4
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.75 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\frac {B {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {A {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {3 \, C {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4, 
x, algorithm="maxima")
 

Output:

1/840*(B*(105*sin(d*x + c)/(cos(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x 
 + c) + 1)^3 - 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 15*sin(d*x + c)^7/ 
(cos(d*x + c) + 1)^7)/a^4 + A*(105*sin(d*x + c)/(cos(d*x + c) + 1) - 35*si 
n(d*x + c)^3/(cos(d*x + c) + 1)^3 - 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 
 + 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 + 3*C*(35*sin(d*x + c)/(cos 
(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^ 
5/(cos(d*x + c) + 1)^5 + 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4)/d
 

Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.16 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 15 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 21 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 21 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 63 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 35 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 35 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{840 \, a^{4} d} \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4, 
x, algorithm="giac")
 

Output:

1/840*(15*A*tan(1/2*d*x + 1/2*c)^7 - 15*B*tan(1/2*d*x + 1/2*c)^7 + 15*C*ta 
n(1/2*d*x + 1/2*c)^7 - 21*A*tan(1/2*d*x + 1/2*c)^5 - 21*B*tan(1/2*d*x + 1/ 
2*c)^5 + 63*C*tan(1/2*d*x + 1/2*c)^5 - 35*A*tan(1/2*d*x + 1/2*c)^3 + 35*B* 
tan(1/2*d*x + 1/2*c)^3 + 105*C*tan(1/2*d*x + 1/2*c)^3 + 105*A*tan(1/2*d*x 
+ 1/2*c) + 105*B*tan(1/2*d*x + 1/2*c) + 105*C*tan(1/2*d*x + 1/2*c))/(a^4*d 
)
 

Mupad [B] (verification not implemented)

Time = 13.43 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.67 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (A-B+C\right )}{56\,a^4\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A+B-3\,C\right )}{40\,a^4\,d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+B+C\right )}{8\,a^4\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (B-A+3\,C\right )}{24\,a^4\,d} \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + 
 d*x))^4),x)
 

Output:

(tan(c/2 + (d*x)/2)^7*(A - B + C))/(56*a^4*d) - (tan(c/2 + (d*x)/2)^5*(A + 
 B - 3*C))/(40*a^4*d) + (tan(c/2 + (d*x)/2)*(A + B + C))/(8*a^4*d) + (tan( 
c/2 + (d*x)/2)^3*(B - A + 3*C))/(24*a^4*d)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.03 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^4} \, dx=\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a -15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} b +15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} c -21 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -21 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +63 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} c -35 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +35 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +105 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} c +105 a +105 b +105 c \right )}{840 a^{4} d} \] Input:

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^4,x)
 

Output:

(tan((c + d*x)/2)*(15*tan((c + d*x)/2)**6*a - 15*tan((c + d*x)/2)**6*b + 1 
5*tan((c + d*x)/2)**6*c - 21*tan((c + d*x)/2)**4*a - 21*tan((c + d*x)/2)** 
4*b + 63*tan((c + d*x)/2)**4*c - 35*tan((c + d*x)/2)**2*a + 35*tan((c + d* 
x)/2)**2*b + 105*tan((c + d*x)/2)**2*c + 105*a + 105*b + 105*c))/(840*a**4 
*d)