\(\int \sec (c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [485]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 104 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a (15 A+5 B+7 C) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 (5 B-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d} \] Output:

2/15*a*(15*A+5*B+7*C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15*(5*B-2*C)*( 
a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d+2/5*C*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c) 
/a/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.99 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.84 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {(15 A+10 B+14 C+2 (5 B+4 C) \cos (c+d x)+(15 A+10 B+8 C) \cos (2 (c+d x))) \sec (c+d x) \sqrt {a (1+\sec (c+d x))} \tan (c+d x)}{15 d (1+\cos (c+d x))} \] Input:

Integrate[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Se 
c[c + d*x]^2),x]
 

Output:

((15*A + 10*B + 14*C + 2*(5*B + 4*C)*Cos[c + d*x] + (15*A + 10*B + 8*C)*Co 
s[2*(c + d*x)])*Sec[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*Tan[c + d*x])/(15* 
d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.11, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3042, 4570, 27, 3042, 4489, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4570

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) \sqrt {\sec (c+d x) a+a} (a (5 A+3 C)+a (5 B-2 C) \sec (c+d x))dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) \sqrt {\sec (c+d x) a+a} (a (5 A+3 C)+a (5 B-2 C) \sec (c+d x))dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (5 A+3 C)+a (5 B-2 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {1}{3} a (15 A+5 B+7 C) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a (5 B-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} a (15 A+5 B+7 C) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a (5 B-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {2 a^2 (15 A+5 B+7 C) \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a (5 B-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\)

Input:

Int[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + 
d*x]^2),x]
 

Output:

(2*C*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*a*d) + ((2*a^2*(15*A + 5* 
B + 7*C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(5*B - 2*C)*S 
qrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d))/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 1.04 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.87

method result size
default \(\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (15 A \sin \left (d x +c \right )+\left (10 \sin \left (d x +c \right )+5 \tan \left (d x +c \right )\right ) B +\left (3 \sec \left (d x +c \right ) \tan \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sin \left (d x +c \right )\right ) C \right )}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(90\)
parts \(-\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{d}+\frac {B \left (4 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (3 \cos \left (d x +c \right )+3\right )}+\frac {C \left (16 \sin \left (d x +c \right )+8 \tan \left (d x +c \right )+6 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (15 \cos \left (d x +c \right )+15\right )}\) \(141\)

Input:

int(sec(d*x+c)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,me 
thod=_RETURNVERBOSE)
 

Output:

2/15/d*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(15*A*sin(d*x+c)+(10*sin(d* 
x+c)+5*tan(d*x+c))*B+(3*sec(d*x+c)*tan(d*x+c)+4*tan(d*x+c)+8*sin(d*x+c))*C 
)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.86 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left ({\left (15 \, A + 10 \, B + 8 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B + 4 \, C\right )} \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="fricas")
 

Output:

2/15*((15*A + 10*B + 8*C)*cos(d*x + c)^2 + (5*B + 4*C)*cos(d*x + c) + 3*C) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^3 + 
d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \] Input:

integrate(sec(d*x+c)*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)* 
*2),x)
 

Output:

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)** 
2)*sec(c + d*x), x)
 

Maxima [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="maxima")
 

Output:

2/15*(15*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(1/4)*(((A + 2*B)*d*cos(2*d*x + 2*c)^2 + (A + 2*B)*d*sin(2*d*x + 2*c)^2 
+ 2*(A + 2*B)*d*cos(2*d*x + 2*c) + (A + 2*B)*d)*integrate((((cos(8*d*x + 8 
*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 
 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 
 2*c) + 3*sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x 
 + 2*c) + sin(2*d*x + 2*c)^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c))) + (cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d 
*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d 
*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2 
*d*x + 2*c))*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin 
(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*s 
in(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*s 
in(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3 
*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + 
 cos(2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6* 
c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2* 
c)^2)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arc...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 206 vs. \(2 (92) = 184\).

Time = 0.61 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.98 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left ({\left (\sqrt {2} {\left (15 \, A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 5 \, B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 7 \, C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 10 \, \sqrt {2} {\left (3 \, A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, \sqrt {2} {\left (A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{15 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} d} \] Input:

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="giac")
 

Output:

2/15*((sqrt(2)*(15*A*a^3*sgn(cos(d*x + c)) + 5*B*a^3*sgn(cos(d*x + c)) + 7 
*C*a^3*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2 - 10*sqrt(2)*(3*A*a^3*sgn 
(cos(d*x + c)) + 2*B*a^3*sgn(cos(d*x + c)) + C*a^3*sgn(cos(d*x + c))))*tan 
(1/2*d*x + 1/2*c)^2 + 15*sqrt(2)*(A*a^3*sgn(cos(d*x + c)) + B*a^3*sgn(cos( 
d*x + c)) + C*a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x 
 + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)
 

Mupad [B] (verification not implemented)

Time = 15.43 (sec) , antiderivative size = 246, normalized size of antiderivative = 2.37 \[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}-1\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (A\,15{}\mathrm {i}+B\,10{}\mathrm {i}+C\,8{}\mathrm {i}+A\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,30{}\mathrm {i}+A\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,15{}\mathrm {i}+B\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,10{}\mathrm {i}+B\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,20{}\mathrm {i}+B\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,10{}\mathrm {i}+B\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,10{}\mathrm {i}+C\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,28{}\mathrm {i}+C\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,8{}\mathrm {i}\right )}{15\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2} \] Input:

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/c 
os(c + d*x),x)
 

Output:

-(2*(exp(c*1i + d*x*1i) - 1)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d 
*x*1i)/2))^(1/2)*(A*15i + B*10i + C*8i + A*exp(c*2i + d*x*2i)*30i + A*exp( 
c*4i + d*x*4i)*15i + B*exp(c*1i + d*x*1i)*10i + B*exp(c*2i + d*x*2i)*20i + 
 B*exp(c*3i + d*x*3i)*10i + B*exp(c*4i + d*x*4i)*10i + C*exp(c*1i + d*x*1i 
)*8i + C*exp(c*2i + d*x*2i)*28i + C*exp(c*3i + d*x*3i)*8i + C*exp(c*4i + d 
*x*4i)*8i))/(15*d*(exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^2)
 

Reduce [F]

\[ \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int(sec(d*x+c)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3,x)*c + int(sqrt(sec(c 
+ d*x) + 1)*sec(c + d*x)**2,x)*b + int(sqrt(sec(c + d*x) + 1)*sec(c + d*x) 
,x)*a)