\(\int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [490]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 209 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (35 A+40 B+48 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {a (35 A+40 B+48 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {a (35 A+40 B+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d} \] Output:

1/64*a^(1/2)*(35*A+40*B+48*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^( 
1/2))/d+1/64*a*(35*A+40*B+48*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/96*a 
*(35*A+40*B+48*C)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/24*a*(A 
+8*B)*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/4*A*cos(d*x+c)^3* 
(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.16 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.43 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \left (C \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},1-\sec (c+d x)\right )+B \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4,\frac {3}{2},1-\sec (c+d x)\right )+A \operatorname {Hypergeometric2F1}\left (\frac {1}{2},5,\frac {3}{2},1-\sec (c+d x)\right )\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d} \] Input:

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C* 
Sec[c + d*x]^2),x]
 

Output:

(2*(C*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]] + B*Hypergeometric2 
F1[1/2, 4, 3/2, 1 - Sec[c + d*x]] + A*Hypergeometric2F1[1/2, 5, 3/2, 1 - S 
ec[c + d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/d
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.98, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 4574, 27, 3042, 4503, 3042, 4292, 3042, 4292, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {\int \frac {1}{2} \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a (A+8 B)+a (5 A+8 C) \sec (c+d x))dx}{4 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a (A+8 B)+a (5 A+8 C) \sec (c+d x))dx}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A+8 B)+a (5 A+8 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \int \cos ^2(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \int \cos (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \left (\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {a^2 (A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {1}{6} a (35 A+40 B+48 C) \left (\frac {3}{4} \left (\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )}{8 a}+\frac {A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

Input:

Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2),x]
 

Output:

(A*Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(4*d) + ((a^2*(A 
+ 8*B)*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(3 
5*A + 40*B + 48*C)*((a*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + 
d*x]]) + (3*((Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x 
]]])/d + (a*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4))/6)/(8*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(388\) vs. \(2(185)=370\).

Time = 20.97 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.86

method result size
default \(\frac {\left (\left (105 \cos \left (d x +c \right )+105\right ) A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\csc \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\cot \left (d x +c \right )^{2}-1}}\right )+\left (120 \cos \left (d x +c \right )+120\right ) B \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\csc \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\cot \left (d x +c \right )^{2}-1}}\right )+\left (144 \cos \left (d x +c \right )+144\right ) C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\csc \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\cot \left (d x +c \right )^{2}-1}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (48 \cos \left (d x +c \right )^{3}+56 \cos \left (d x +c \right )^{2}+70 \cos \left (d x +c \right )+105\right ) A +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (64 \cos \left (d x +c \right )^{2}+80 \cos \left (d x +c \right )+120\right ) B +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (96 \cos \left (d x +c \right )+144\right ) C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{192 d \left (\cos \left (d x +c \right )+1\right )}\) \(389\)

Input:

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, 
method=_RETURNVERBOSE)
 

Output:

1/192/d*((105*cos(d*x+c)+105)*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh 
(2^(1/2)/(csc(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+cot(d*x+c)^2-1)^(1/2)*(csc( 
d*x+c)-cot(d*x+c)))+(120*cos(d*x+c)+120)*B*(-cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*arctanh(2^(1/2)/(csc(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+cot(d*x+c)^2-1)^ 
(1/2)*(csc(d*x+c)-cot(d*x+c)))+(144*cos(d*x+c)+144)*C*(-cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*arctanh(2^(1/2)/(csc(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+cot(d 
*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c)))+sin(d*x+c)*cos(d*x+c)*(48*cos(d* 
x+c)^3+56*cos(d*x+c)^2+70*cos(d*x+c)+105)*A+sin(d*x+c)*cos(d*x+c)*(64*cos( 
d*x+c)^2+80*cos(d*x+c)+120)*B+sin(d*x+c)*cos(d*x+c)*(96*cos(d*x+c)+144)*C) 
*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 404, normalized size of antiderivative = 1.93 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right ) + 35 \, A + 40 \, B + 48 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, A \cos \left (d x + c\right )^{4} + 8 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right ) + 35 \, A + 40 \, B + 48 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, A \cos \left (d x + c\right )^{4} + 8 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="fricas")
 

Output:

[1/384*(3*((35*A + 40*B + 48*C)*cos(d*x + c) + 35*A + 40*B + 48*C)*sqrt(-a 
)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 
 2*(48*A*cos(d*x + c)^4 + 8*(7*A + 8*B)*cos(d*x + c)^3 + 2*(35*A + 40*B + 
48*C)*cos(d*x + c)^2 + 3*(35*A + 40*B + 48*C)*cos(d*x + c))*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/192*(3*(( 
35*A + 40*B + 48*C)*cos(d*x + c) + 35*A + 40*B + 48*C)*sqrt(a)*arctan(sqrt 
((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 
 (48*A*cos(d*x + c)^4 + 8*(7*A + 8*B)*cos(d*x + c)^3 + 2*(35*A + 40*B + 48 
*C)*cos(d*x + c)^2 + 3*(35*A + 40*B + 48*C)*cos(d*x + c))*sqrt((a*cos(d*x 
+ c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+ 
c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9618 vs. \(2 (185) = 370\).

Time = 0.79 (sec) , antiderivative size = 9618, normalized size of antiderivative = 46.02 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="maxima")
 

Output:

1/768*(8*(4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin( 
2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin 
(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arct 
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c) 
, cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3 
/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*a 
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*ar 
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d* 
x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c) 
)) + 5*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arcta 
n2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(s 
in(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3 
*c), cos(3*d*x + 3*c))) + 3*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 
3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 
3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a 
) + 15*sqrt(a)*(arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3* 
c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/ 
3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2 
(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1518 vs. \(2 (185) = 370\).

Time = 0.94 (sec) , antiderivative size = 1518, normalized size of antiderivative = 7.26 \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c) 
^2),x, algorithm="giac")
 

Output:

-1/384*(3*(35*A*sqrt(-a)*sgn(cos(d*x + c)) + 40*B*sqrt(-a)*sgn(cos(d*x + c 
)) + 48*C*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2* 
c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(35* 
A*sqrt(-a)*sgn(cos(d*x + c)) + 40*B*sqrt(-a)*sgn(cos(d*x + c)) + 48*C*sqrt 
(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t 
an(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) - 4*sqrt(2)*(279*(sqrt 
(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^14*A*sqrt 
(-a)*a*sgn(cos(d*x + c)) - 504*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*ta 
n(1/2*d*x + 1/2*c)^2 + a))^14*B*sqrt(-a)*a*sgn(cos(d*x + c)) + 240*(sqrt(- 
a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^14*C*sqrt(- 
a)*a*sgn(cos(d*x + c)) + 285*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan( 
1/2*d*x + 1/2*c)^2 + a))^12*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 5976*(sqrt( 
-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*B*sqrt( 
-a)*a^2*sgn(cos(d*x + c)) - 1968*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a* 
tan(1/2*d*x + 1/2*c)^2 + a))^12*C*sqrt(-a)*a^2*sgn(cos(d*x + c)) - 4605*(s 
qrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A*s 
qrt(-a)*a^3*sgn(cos(d*x + c)) - 31320*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqr 
t(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 26 
40*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^1 
0*C*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 37281*(sqrt(-a)*tan(1/2*d*x + 1/2*...
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^4\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int(cos(c + d*x)^4*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos( 
c + d*x)^2),x)
 

Output:

int(cos(c + d*x)^4*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos( 
c + d*x)^2), x)
 

Reduce [F]

\[ \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**4*sec(c + d*x)**2,x)*c + 
 int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**4*sec(c + d*x),x)*b + int(sqrt(s 
ec(c + d*x) + 1)*cos(c + d*x)**4,x)*a)