\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [523]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 131 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B-3 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \] Output:

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/4*(5*A-B 
-3*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2 
)/a^(3/2)/d-1/2*(A-B+C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 5.28 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.85 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \left (2 (5 A-B-3 C) \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}+\sqrt {2} \left (-8 A \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}+(A-B+C) \sqrt {\frac {1}{1+\cos (c+d x)}} \sqrt {\sec (c+d x)} \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )\right )}{2 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(3/ 
2),x]
 

Output:

-1/2*(Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(2*(5*A - B - 3*C)*ArcSin[Tan[(c 
 + d*x)/2]]*Cos[(c + d*x)/2]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c 
+ d*x]] + Sqrt[2]*(-8*A*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + Sec[c + d*x])^(- 
1)]]*Cos[(c + d*x)/2]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d*x]] 
 + (A - B + C)*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[Sec[c + d*x]]*(-Sin[(c + 
 d*x)/2] + Sin[(3*(c + d*x))/2]))))/(d*Sqrt[Sec[(c + d*x)/2]^2]*(a*(1 + Se 
c[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 4540, 27, 3042, 4408, 3042, 4261, 216, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4540

\(\displaystyle -\frac {\int -\frac {4 a A-a (A-B-3 C) \sec (c+d x)}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {4 a A-a (A-B-3 C) \sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {4 a A-a (A-B-3 C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4408

\(\displaystyle \frac {4 A \int \sqrt {\sec (c+d x) a+a}dx-a (5 A-B-3 C) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-a (5 A-B-3 C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {-\frac {8 a A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-a (5 A-B-3 C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {8 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-a (5 A-B-3 C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {2 a (5 A-B-3 C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {8 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {8 \sqrt {a} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (5 A-B-3 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

((8*Sqrt[a]*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - 
 (Sqrt[2]*Sqrt[a]*(5*A - B - 3*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*S 
qrt[a + a*Sec[c + d*x]])])/d)/(4*a^2) - ((A - B + C)*Tan[c + d*x])/(2*d*(a 
 + a*Sec[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4408
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c/a   Int[Sqrt[a + b*Csc[e + f*x]], x], x] - 
Simp[(b*c - a*d)/a   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4540
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - 
b*B + a*C))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Sim 
p[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*(2*m + 1) + 
 (b*B*(m + 1) - a*(A*(m + 1) - C*m))*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
b, e, f, A, B, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(320\) vs. \(2(110)=220\).

Time = 3.12 (sec) , antiderivative size = 321, normalized size of antiderivative = 2.45

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (4 A \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )+A \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-B \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+C \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-5 A \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+B \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+3 C \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 d \,a^{2}}\) \(321\)
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+4 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )-5 \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 d \,a^{2}}+\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (-\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+\ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 d \,a^{2}}+\frac {C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+3 \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 d \,a^{2}}\) \(399\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETUR 
NVERBOSE)
 

Output:

1/4/d/a^2*(a*(1+sec(d*x+c)))^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(4 
*A*2^(1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(csc(d* 
x+c)-cot(d*x+c)))+A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(csc(d*x+c)-cot(d 
*x+c))-B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(csc(d*x+c)-cot(d*x+c))+C*(- 
2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(csc(d*x+c)-cot(d*x+c))-5*A*ln((-2*cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c))+B*ln((-2*cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c))+3*C*ln((-2*cos(d*x+c)/(cos(d*x+ 
c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 241 vs. \(2 (110) = 220\).

Time = 8.53 (sec) , antiderivative size = 568, normalized size of antiderivative = 4.34 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algori 
thm="fricas")
 

Output:

[-1/8*(4*(A - B + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)* 
sin(d*x + c) - sqrt(2)*((5*A - B - 3*C)*cos(d*x + c)^2 + 2*(5*A - B - 3*C) 
*cos(d*x + c) + 5*A - B - 3*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*co 
s(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c) 
^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 8*(A*c 
os(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2 
*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c 
) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a^2*d*cos(d*x + c)^2 + 2*a^2 
*d*cos(d*x + c) + a^2*d), -1/4*(2*(A - B + C)*sqrt((a*cos(d*x + c) + a)/co 
s(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((5*A - B - 3*C)*cos(d*x + 
 c)^2 + 2*(5*A - B - 3*C)*cos(d*x + c) + 5*A - B - 3*C)*sqrt(a)*arctan(sqr 
t(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x 
 + c))) + 8*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))/( 
a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(a*(sec(c + d*x) + 1))** 
(3/2), x)
 

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algori 
thm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(a*sec(d*x + c) + a)^(3/ 
2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algori 
thm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b \right )}{a^{2}} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int(sqrt(sec(c + d*x) + 1)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1 
),x)*a + int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2)/(sec(c + d*x)**2 + 2 
*sec(c + d*x) + 1),x)*c + int((sqrt(sec(c + d*x) + 1)*sec(c + d*x))/(sec(c 
 + d*x)**2 + 2*sec(c + d*x) + 1),x)*b))/a**2