\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx\) [568]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 184 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {(4 A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(5 A-2 B-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \] Output:

(4*A-B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a^2/d-1/3*(5*A-2*B-C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c 
,2^(1/2))*sec(d*x+c)^(1/2)/a^2/d-1/3*(5*A-2*B-C)*sec(d*x+c)^(1/2)*sin(d*x+ 
c)/a^2/d/(1+sec(d*x+c))-1/3*(A-B+C)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec 
(d*x+c))^2
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.91 (sec) , antiderivative size = 427, normalized size of antiderivative = 2.32 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {40 A \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{\sqrt {\cos (c+d x)}}+\frac {16 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{\sqrt {\cos (c+d x)}}+\frac {8 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{\sqrt {\cos (c+d x)}}+64 i A e^{2 i c} \left (\frac {3}{-1+e^{2 i c}}-\frac {e^{2 i d x} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}\right )-16 i B e^{2 i c} \left (\frac {3}{-1+e^{2 i c}}-\frac {e^{2 i d x} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}\right )-\left ((20 A-5 B-C) \cos \left (\frac {1}{2} (c-d x)\right )+(16 A-4 B+C) \cos \left (\frac {1}{2} (3 c+d x)\right )+9 A \cos \left (\frac {1}{2} (c+3 d x)\right )-3 B \cos \left (\frac {1}{2} (c+3 d x)\right )+3 A \cos \left (\frac {1}{2} (5 c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{3 a^2 d (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x))) \sqrt {\sec (c+d x)} (1+\sec (c+d x))^2} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + 
 a*Sec[c + d*x])^2),x]
 

Output:

(Cos[(c + d*x)/2]^4*((-40*A*EllipticF[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] 
+ (16*B*EllipticF[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + (8*C*EllipticF[(c 
+ d*x)/2, 2])/Sqrt[Cos[c + d*x]] + (64*I)*A*E^((2*I)*c)*(3/(-1 + E^((2*I)* 
c)) - (E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x)) 
])/Sqrt[1 + E^((2*I)*(c + d*x))]) - (16*I)*B*E^((2*I)*c)*(3/(-1 + E^((2*I) 
*c)) - (E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x) 
)])/Sqrt[1 + E^((2*I)*(c + d*x))]) - ((20*A - 5*B - C)*Cos[(c - d*x)/2] + 
(16*A - 4*B + C)*Cos[(3*c + d*x)/2] + 9*A*Cos[(c + 3*d*x)/2] - 3*B*Cos[(c 
+ 3*d*x)/2] + 3*A*Cos[(5*c + 3*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2] 
^3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(3*a^2*d*(A + 2*C + 2*B*Cos[c 
 + d*x] + A*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*(1 + Sec[c + d*x])^2)
 

Rubi [A] (verified)

Time = 1.05 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 4572, 27, 3042, 4508, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4572

\(\displaystyle \frac {\int \frac {a (7 A-B+C)-3 a (A-B-C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (7 A-B+C)-3 a (A-B-C) \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (7 A-B+C)-3 a (A-B-C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (4 A-B)-a^2 (5 A-2 B-C) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (4 A-B)-a^2 (5 A-2 B-C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a^2 (5 A-2 B-C) \int \sqrt {\sec (c+d x)}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a^2 (5 A-2 B-C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a^2 (5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a^2 (5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {6 a^2 (4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a^2 (5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {6 a^2 (4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a^2 (5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {2 (5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec 
[c + d*x])^2),x]
 

Output:

-1/3*((A - B + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]) 
^2) + (((6*a^2*(4*A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt 
[Sec[c + d*x]])/d - (2*a^2*(5*A - 2*B - C)*Sqrt[Cos[c + d*x]]*EllipticF[(c 
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/a^2 - (2*(5*A - 2*B - C)*Sqrt[Sec[c + 
 d*x]]*Sin[c + d*x])/(d*(1 + Sec[c + d*x])))/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 

rule 4572
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*Csc[e 
+ f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) 
   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - 
 A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(169)=338\).

Time = 5.01 (sec) , antiderivative size = 509, normalized size of antiderivative = 2.77

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-38 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+15 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B -C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(509\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, 
method=_RETURNVERBOSE)
 

Output:

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*A*cos(1/2* 
d*x+1/2*c)^6+10*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1) 
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*A*cos 
(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1) 
^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^6-4*B 
*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^ 
2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*cos(1/2*d*x+1/2*c)^3* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))-2*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))-38*A*cos(1/2*d*x+1/2*c)^4+20*B*cos(1/2*d*x+1/2*c)^4-2*C*cos(1/2*d*x+1 
/2*c)^4+15*A*cos(1/2*d*x+1/2*c)^2-9*B*cos(1/2*d*x+1/2*c)^2+3*C*cos(1/2*d*x 
+1/2*c)^2-A+B-C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 385, normalized size of antiderivative = 2.09 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-4 i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (4 i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, {\left (2 \, A - B\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 2 \, B - C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="fricas")
 

Output:

1/6*((sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-5*I*A + 2 
*I*B + I*C)*cos(d*x + c) + sqrt(2)*(5*I*A - 2*I*B - I*C))*weierstrassPInve 
rse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-5*I*A + 2*I*B + I*C 
)*cos(d*x + c)^2 - 2*sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c) + sqrt(2)* 
(-5*I*A + 2*I*B + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c)) - 3*(sqrt(2)*(-4*I*A + I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(-4*I*A + I 
*B)*cos(d*x + c) + sqrt(2)*(-4*I*A + I*B))*weierstrassZeta(-4, 0, weierstr 
assPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)*(4*I*A - I 
*B)*cos(d*x + c)^2 + 2*sqrt(2)*(4*I*A - I*B)*cos(d*x + c) + sqrt(2)*(4*I*A 
 - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c))) - 2*(3*(2*A - B)*cos(d*x + c)^2 + (5*A - 2*B - C)*cos(d*x 
 + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*co 
s(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2)/(a+a*sec(d*x+ 
c))**2,x)
 

Output:

(Integral(A/(sec(c + d*x)**(5/2) + 2*sec(c + d*x)**(3/2) + sqrt(sec(c + d* 
x))), x) + Integral(B*sec(c + d*x)/(sec(c + d*x)**(5/2) + 2*sec(c + d*x)** 
(3/2) + sqrt(sec(c + d*x))), x) + Integral(C*sec(c + d*x)**2/(sec(c + d*x) 
**(5/2) + 2*sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x))/a**2
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2* 
sqrt(sec(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^2*(1/cos 
(c + d*x))^(1/2)),x)
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^2*(1/cos 
(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}+2 \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) c}{a^{2}} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x)
 

Output:

(int(sqrt(sec(c + d*x))/(sec(c + d*x)**3 + 2*sec(c + d*x)**2 + sec(c + d*x 
)),x)*a + int(sqrt(sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x) 
*b + int((sqrt(sec(c + d*x))*sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d* 
x) + 1),x)*c)/a**2