\(\int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [578]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 227 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (48 A+40 B+35 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {a (48 A+40 B+35 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {a (48 A+40 B+35 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (8 B+C) \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d} \] Output:

1/64*a^(1/2)*(48*A+40*B+35*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^ 
(1/2))/d+1/64*a*(48*A+40*B+35*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d* 
x+c))^(1/2)+1/96*a*(48*A+40*B+35*C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec 
(d*x+c))^(1/2)+1/24*a*(8*B+C)*sec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*sec(d*x+c 
))^(1/2)+1/4*C*sec(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 2.02 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.88 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a \left (3 (48 A+40 B+35 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+2 (48 A+40 B+35 C) \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+8 (8 B+7 C) \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)+48 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {7}{2}}(c+d x)+3 (48 A+40 B+35 C) \sqrt {(-1+\cos (c+d x)) \sec ^2(c+d x)}\right ) \tan (c+d x)}{192 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] 
+ C*Sec[c + d*x]^2),x]
 

Output:

(a*(3*(48*A + 40*B + 35*C)*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*(48*A + 40*B 
 + 35*C)*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 8*(8*B + 7*C)*Sqrt[1 
- Sec[c + d*x]]*Sec[c + d*x]^(5/2) + 48*C*Sqrt[1 - Sec[c + d*x]]*Sec[c + d 
*x]^(7/2) + 3*(48*A + 40*B + 35*C)*Sqrt[(-1 + Cos[c + d*x])*Sec[c + d*x]^2 
])*Tan[c + d*x])/(192*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.15 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.98, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3042, 4576, 27, 3042, 4504, 3042, 4290, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \frac {\int \frac {1}{2} \sec ^{\frac {5}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (a (8 A+5 C)+a (8 B+C) \sec (c+d x))dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec ^{\frac {5}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (a (8 A+5 C)+a (8 B+C) \sec (c+d x))dx}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (8 A+5 C)+a (8 B+C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {a^2 (8 B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {1}{6} a (48 A+40 B+35 C) \left (\frac {3}{4} \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

Input:

Int[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Se 
c[c + d*x]^2),x]
 

Output:

(C*Sec[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(4*d) + ((a^2 
*(8*B + C)*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) 
 + (a*(48*A + 40*B + 35*C)*((a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[ 
a + a*Sec[c + d*x]]) + (3*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a 
+ a*Sec[c + d*x]]])/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a* 
Sec[c + d*x]])))/4))/6)/(8*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(455\) vs. \(2(195)=390\).

Time = 10.34 (sec) , antiderivative size = 456, normalized size of antiderivative = 2.01

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {5}{2}} \left (-144 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-120 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-105 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-144 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-120 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}-105 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (144 \cos \left (d x +c \right )+96\right ) \sqrt {2}\, A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}+\sin \left (d x +c \right ) \left (120 \cos \left (d x +c \right )^{2}+80 \cos \left (d x +c \right )+64\right ) \sqrt {2}\, B \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}+\left (105 \cos \left (d x +c \right )^{3}+70 \cos \left (d x +c \right )^{2}+56 \cos \left (d x +c \right )+48\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right )\right )}{384 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(456\)
parts \(\frac {A \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}+\sin \left (d x +c \right ) \left (3 \cos \left (d x +c \right )+2\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )\right )}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {B \sec \left (d x +c \right )^{\frac {7}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (15 \cos \left (d x +c \right )^{4} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-15 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{4}+\sin \left (d x +c \right ) \left (15 \cos \left (d x +c \right )^{2}+10 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )\right )}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C \sec \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (105 \cos \left (d x +c \right )^{5} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-105 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{5}+\sin \left (d x +c \right ) \left (105 \cos \left (d x +c \right )^{3}+70 \cos \left (d x +c \right )^{2}+56 \cos \left (d x +c \right )+48\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )\right )}{384 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(563\)

Input:

int(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x,method=_RETURNVERBOSE)
 

Output:

1/384/d*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(5/2)/(cos(d*x+c)+1)/(-1/(cos( 
d*x+c)+1))^(1/2)*(-144*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos(d* 
x+c)+1))^(1/2))*cos(d*x+c)^3-120*B*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/( 
-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3-105*C*arctan(1/2*(-cot(d*x+c)+csc(d 
*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3-144*A*arctan(1/2*(-cot(d* 
x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3-120*B*arctan(1/ 
2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^3-105*C 
*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+ 
c)^3+sin(d*x+c)*cos(d*x+c)*(144*cos(d*x+c)+96)*2^(1/2)*A*(-2/(cos(d*x+c)+1 
))^(1/2)+sin(d*x+c)*(120*cos(d*x+c)^2+80*cos(d*x+c)+64)*2^(1/2)*B*(-2/(cos 
(d*x+c)+1))^(1/2)+(105*cos(d*x+c)^3+70*cos(d*x+c)^2+56*cos(d*x+c)+48)*2^(1 
/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 503, normalized size of antiderivative = 2.22 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (3 \, {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (8 \, B + 7 \, C\right )} \cos \left (d x + c\right ) + 48 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{768 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {3 \, {\left ({\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (48 \, A + 40 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (8 \, B + 7 \, C\right )} \cos \left (d x + c\right ) + 48 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{384 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="fricas")
 

Output:

[1/768*(3*((48*A + 40*B + 35*C)*cos(d*x + c)^4 + (48*A + 40*B + 35*C)*cos( 
d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d* 
x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) 
*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) 
 + 4*(3*(48*A + 40*B + 35*C)*cos(d*x + c)^3 + 2*(48*A + 40*B + 35*C)*cos(d 
*x + c)^2 + 8*(8*B + 7*C)*cos(d*x + c) + 48*C)*sqrt((a*cos(d*x + c) + a)/c 
os(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^4 + d*cos(d* 
x + c)^3), 1/384*(3*((48*A + 40*B + 35*C)*cos(d*x + c)^4 + (48*A + 40*B + 
35*C)*cos(d*x + c)^3)*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c) 
)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*s 
in(d*x + c))) + 2*(3*(48*A + 40*B + 35*C)*cos(d*x + c)^3 + 2*(48*A + 40*B 
+ 35*C)*cos(d*x + c)^2 + 8*(8*B + 7*C)*cos(d*x + c) + 48*C)*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) 
^4 + d*cos(d*x + c)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec( 
d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6492 vs. \(2 (195) = 390\).

Time = 0.65 (sec) , antiderivative size = 6492, normalized size of antiderivative = 28.60 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="maxima")
 

Output:

-1/768*(48*(12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos 
(7/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*sin(4*d*x + 4*c) + 
2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - 
 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2 
(sin(d*x + c), cos(d*x + c))) - 12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*s 
in(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 3*(2*(2*co 
s(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 
2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin( 
2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c 
), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2 
*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2* 
arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) + 1)* 
cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 
 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*c 
os(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 
+ 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arc 
tan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c) 
, cos(d*x + c))) + 2) - 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + c 
os(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d* 
x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) +...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1317 vs. \(2 (195) = 390\).

Time = 2.89 (sec) , antiderivative size = 1317, normalized size of antiderivative = 5.80 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="giac")
 

Output:

1/384*(3*(48*A*sqrt(a)*sgn(cos(d*x + c)) + 40*B*sqrt(a)*sgn(cos(d*x + c)) 
+ 35*C*sqrt(a)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - 
sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(48*A*sqrt 
(a)*sgn(cos(d*x + c)) + 40*B*sqrt(a)*sgn(cos(d*x + c)) + 35*C*sqrt(a)*sgn( 
cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
+ 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) - 4*sqrt(2)*(240*(sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^14*A*a^(3/2)*sgn(cos(d 
*x + c)) - 504*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c) 
^2 + a))^14*B*a^(3/2)*sgn(cos(d*x + c)) + 279*(sqrt(a)*tan(1/2*d*x + 1/2*c 
) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^14*C*a^(3/2)*sgn(cos(d*x + c)) - 1 
968*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^12 
*A*a^(5/2)*sgn(cos(d*x + c)) + 5976*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a 
*tan(1/2*d*x + 1/2*c)^2 + a))^12*B*a^(5/2)*sgn(cos(d*x + c)) + 285*(sqrt(a 
)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^12*C*a^(5/2)* 
sgn(cos(d*x + c)) - 2640*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a))^10*A*a^(7/2)*sgn(cos(d*x + c)) - 31320*(sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*a^(7/2)*sgn(cos(d 
*x + c)) - 4605*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c 
)^2 + a))^10*C*a^(7/2)*sgn(cos(d*x + c)) + 41616*(sqrt(a)*tan(1/2*d*x + 1/ 
2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a^(9/2)*sgn(cos(d*x + c)...
 

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) 
+ C/cos(c + d*x)^2),x)
 

Output:

int((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) 
+ C/cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**4,x)* 
c + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3,x)*b + i 
nt(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x)*a)