\(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [587]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 233 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (112 A+88 B+75 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {a^2 (112 A+88 B+75 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 (48 A+56 B+39 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (8 B+3 C) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{24 d}+\frac {C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{4 d} \] Output:

1/64*a^(3/2)*(112*A+88*B+75*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c)) 
^(1/2))/d+1/64*a^2*(112*A+88*B+75*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*se 
c(d*x+c))^(1/2)+1/96*a^2*(48*A+56*B+39*C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a 
+a*sec(d*x+c))^(1/2)+1/24*a*(8*B+3*C)*sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1 
/2)*sin(d*x+c)/d+1/4*C*sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/ 
d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 2.02 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.86 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 \left (3 (112 A+88 B+75 C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+2 (48 A+88 B+75 C) \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+8 (8 B+15 C) \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)+48 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {7}{2}}(c+d x)+3 (112 A+88 B+75 C) \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{192 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x 
] + C*Sec[c + d*x]^2),x]
 

Output:

(a^2*(3*(112*A + 88*B + 75*C)*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*(48*A + 8 
8*B + 75*C)*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 8*(8*B + 15*C)*Sqr 
t[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2) + 48*C*Sqrt[1 - Sec[c + d*x]]*Sec[c 
 + d*x]^(7/2) + 3*(112*A + 88*B + 75*C)*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + 
 d*x])])*Tan[c + d*x])/(192*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d 
*x])])
 

Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4576, 27, 3042, 4506, 27, 3042, 4504, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \frac {\int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) (\sec (c+d x) a+a)^{3/2} (a (8 A+3 C)+a (8 B+3 C) \sec (c+d x))dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec ^{\frac {3}{2}}(c+d x) (\sec (c+d x) a+a)^{3/2} (a (8 A+3 C)+a (8 B+3 C) \sec (c+d x))dx}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (8 A+3 C)+a (8 B+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\frac {1}{3} \int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} \left (3 (16 A+8 B+9 C) a^2+(48 A+56 B+39 C) \sec (c+d x) a^2\right )dx+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{6} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} \left (3 (16 A+8 B+9 C) a^2+(48 A+56 B+39 C) \sec (c+d x) a^2\right )dx+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 (16 A+8 B+9 C) a^2+(48 A+56 B+39 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} a^2 (112 A+88 B+75 C) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} a^2 (112 A+88 B+75 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} a^2 (112 A+88 B+75 C) \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} a^2 (112 A+88 B+75 C) \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} a^2 (112 A+88 B+75 C) \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {a^2 (8 B+3 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}+\frac {1}{6} \left (\frac {a^3 (48 A+56 B+39 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {3}{4} a^2 (112 A+88 B+75 C) \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\right )}{8 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 d}\)

Input:

Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C* 
Sec[c + d*x]^2),x]
 

Output:

(C*Sec[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(4*d) + ((a 
^2*(8*B + 3*C)*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/( 
3*d) + ((a^3*(48*A + 56*B + 39*C)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sq 
rt[a + a*Sec[c + d*x]]) + (3*a^2*(112*A + 88*B + 75*C)*((Sqrt[a]*ArcSinh[( 
Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sec[c + d*x]^(3/2) 
*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4)/6)/(8*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(456\) vs. \(2(201)=402\).

Time = 14.04 (sec) , antiderivative size = 457, normalized size of antiderivative = 1.96

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \left (-336 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-264 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-225 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-336 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-264 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-225 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+\sin \left (d x +c \right ) \left (336 \cos \left (d x +c \right )+96\right ) \sqrt {2}\, A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}+\left (264 \cos \left (d x +c \right )^{2}+176 \cos \left (d x +c \right )+64\right ) \sqrt {2}\, B \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right )+\left (225 \cos \left (d x +c \right )^{3}+150 \cos \left (d x +c \right )^{2}+120 \cos \left (d x +c \right )+48\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )\right )}{384 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(457\)
parts \(-\frac {A a \left (-7 \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+7 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+\sin \left (d x +c \right ) \left (-7 \cos \left (d x +c \right )-2\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}}}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {B a \left (33 \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-33 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{3}+\sin \left (d x +c \right ) \left (33 \cos \left (d x +c \right )^{2}+22 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {5}{2}}}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C a \left (75 \cos \left (d x +c \right )^{4} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-75 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{4}+\sin \left (d x +c \right ) \left (75 \cos \left (d x +c \right )^{3}+50 \cos \left (d x +c \right )^{2}+40 \cos \left (d x +c \right )+16\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {7}{2}}}{128 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(548\)

Input:

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x,method=_RETURNVERBOSE)
 

Output:

1/384/d*a*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(3/2)/(cos(d*x+c)+1)/(-1/(co 
s(d*x+c)+1))^(1/2)*(-336*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos( 
d*x+c)+1))^(1/2))*cos(d*x+c)^2-264*B*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1) 
/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-225*C*arctan(1/2*(-cot(d*x+c)+csc 
(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-336*A*arctan(1/2*(-cot( 
d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-264*B*arctan( 
1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-225 
*C*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d* 
x+c)^2+sin(d*x+c)*(336*cos(d*x+c)+96)*2^(1/2)*A*(-2/(cos(d*x+c)+1))^(1/2)+ 
(264*cos(d*x+c)^2+176*cos(d*x+c)+64)*2^(1/2)*B*(-2/(cos(d*x+c)+1))^(1/2)*t 
an(d*x+c)+(225*cos(d*x+c)^3+150*cos(d*x+c)^2+120*cos(d*x+c)+48)*2^(1/2)*C* 
(-2/(cos(d*x+c)+1))^(1/2)*tan(d*x+c)*sec(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 515, normalized size of antiderivative = 2.21 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{4} + {\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (3 \, {\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{3} + 2 \, {\left (48 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{2} + 8 \, {\left (8 \, B + 15 \, C\right )} a \cos \left (d x + c\right ) + 48 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{768 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {3 \, {\left ({\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{4} + {\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, {\left (112 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{3} + 2 \, {\left (48 \, A + 88 \, B + 75 \, C\right )} a \cos \left (d x + c\right )^{2} + 8 \, {\left (8 \, B + 15 \, C\right )} a \cos \left (d x + c\right ) + 48 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{384 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="fricas")
 

Output:

[1/768*(3*((112*A + 88*B + 75*C)*a*cos(d*x + c)^4 + (112*A + 88*B + 75*C)* 
a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*( 
cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + 
c)^2)) + 4*(3*(112*A + 88*B + 75*C)*a*cos(d*x + c)^3 + 2*(48*A + 88*B + 75 
*C)*a*cos(d*x + c)^2 + 8*(8*B + 15*C)*a*cos(d*x + c) + 48*C*a)*sqrt((a*cos 
(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + 
 c)^4 + d*cos(d*x + c)^3), 1/384*(3*((112*A + 88*B + 75*C)*a*cos(d*x + c)^ 
4 + (112*A + 88*B + 75*C)*a*cos(d*x + c)^3)*sqrt(-a)*arctan(1/2*(cos(d*x + 
 c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/( 
a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*(3*(112*A + 88*B + 75*C)*a*cos(d*x 
 + c)^3 + 2*(48*A + 88*B + 75*C)*a*cos(d*x + c)^2 + 8*(8*B + 15*C)*a*cos(d 
*x + c) + 48*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqr 
t(cos(d*x + c)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec( 
d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8121 vs. \(2 (201) = 402\).

Time = 0.70 (sec) , antiderivative size = 8121, normalized size of antiderivative = 34.85 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="maxima")
 

Output:

-1/768*(48*(56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
 + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 
 24*sqrt(2)*a*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12*sqrt(2) 
*a*sin(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c 
), cos(3/2*d*x + 3/2*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 7*sqrt(2 
)*a*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt( 
2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt 
(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(8/ 
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*(3*sqrt(2)*a*si 
n(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos 
(3/2*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3 
/2*c))) - 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
)^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 
 a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*si 
n(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2 
(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2* 
d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/ 
2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c)...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1317 vs. \(2 (201) = 402\).

Time = 3.92 (sec) , antiderivative size = 1317, normalized size of antiderivative = 5.65 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d* 
x+c)^2),x, algorithm="giac")
 

Output:

1/384*(3*(112*A*a^(3/2)*sgn(cos(d*x + c)) + 88*B*a^(3/2)*sgn(cos(d*x + c)) 
 + 75*C*a^(3/2)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - 
 sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(112*A*a^ 
(3/2)*sgn(cos(d*x + c)) + 88*B*a^(3/2)*sgn(cos(d*x + c)) + 75*C*a^(3/2)*sg 
n(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(336*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^14*A*a^(5/2)*sgn(cos 
(d*x + c)) + 264*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2* 
c)^2 + a))^14*B*a^(5/2)*sgn(cos(d*x + c)) + 225*(sqrt(a)*tan(1/2*d*x + 1/2 
*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^14*C*a^(5/2)*sgn(cos(d*x + c)) - 
 8592*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^ 
12*A*a^(7/2)*sgn(cos(d*x + c)) - 4008*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt 
(a*tan(1/2*d*x + 1/2*c)^2 + a))^12*B*a^(7/2)*sgn(cos(d*x + c)) - 6261*(sqr 
t(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^12*C*a^(7/ 
2)*sgn(cos(d*x + c)) + 70032*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/ 
2*d*x + 1/2*c)^2 + a))^10*A*a^(9/2)*sgn(cos(d*x + c)) + 33960*(sqrt(a)*tan 
(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*a^(9/2)*sgn(c 
os(d*x + c)) + 35925*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 
1/2*c)^2 + a))^10*C*a^(9/2)*sgn(cos(d*x + c)) - 208080*(sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a^(11/2)*sgn(cos(d...
 

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) 
+ C/cos(c + d*x)^2),x)
 

Output:

int((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) 
+ C/cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**4,x 
)*c + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3,x)*b + 
 int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3,x)*c + int( 
sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x)*a + int(sqrt( 
sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x)*b + int(sqrt(sec(c 
 + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*a)