\(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [591]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 172 \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 (12 A+20 B+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a (3 A+5 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \] Output:

2*a^(3/2)*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/15*a^2* 
(12*A+20*B+15*C)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15 
*a*(3*A+5*B)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/5*A*(a 
+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 6.23 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.73 \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^2 \left ((39 A+50 B+30 C+2 (9 A+5 B) \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sin (c+d x)+30 C \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)\right )}{15 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x] 
^2))/Sec[c + d*x]^(5/2),x]
 

Output:

(a^2*((39*A + 50*B + 30*C + 2*(9*A + 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d* 
x)])*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sin[c + d*x] + 30*C*ArcSin[ 
Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x]))/(15*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a 
*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.244, Rules used = {3042, 4574, 27, 3042, 4505, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {2 \int \frac {(\sec (c+d x) a+a)^{3/2} (a (3 A+5 B)+5 a C \sec (c+d x))}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\sec (c+d x) a+a)^{3/2} (a (3 A+5 B)+5 a C \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (3 A+5 B)+5 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((12 A+20 B+15 C) a^2+15 C \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((12 A+20 B+15 C) a^2+15 C \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x)}}dx+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((12 A+20 B+15 C) a^2+15 C \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{3} \left (15 a^2 C \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^3 (12 A+20 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (15 a^2 C \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^3 (12 A+20 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {1}{3} \left (\frac {2 a^3 (12 A+20 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {30 a^2 C \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {2 a^2 (3 A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \left (\frac {30 a^{5/2} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (12 A+20 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )}{5 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/S 
ec[c + d*x]^(5/2),x]
 

Output:

(2*A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ( 
(2*a^2*(3*A + 5*B)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c 
+ d*x]]) + ((30*a^(5/2)*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c 
+ d*x]]])/d + (2*a^3*(12*A + 20*B + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x]) 
/(d*Sqrt[a + a*Sec[c + d*x]]))/3)/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
Maple [A] (warning: unable to verify)

Time = 8.70 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.26

method result size
default \(\frac {a \left (\left (15 \cos \left (d x +c \right )+15\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (15 \cos \left (d x +c \right )+15\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (12 \cos \left (d x +c \right )^{2}+36 \cos \left (d x +c \right )+72\right ) \sin \left (d x +c \right ) A +\left (20 \cos \left (d x +c \right )+100\right ) \sin \left (d x +c \right ) B +60 C \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{30 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\sec \left (d x +c \right )}}\) \(217\)
parts \(\frac {A \left (2 \sin \left (d x +c \right )+6 \tan \left (d x +c \right )+12 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (5 \cos \left (d x +c \right )+5\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {B \left (2 \sin \left (d x +c \right )+10 \tan \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (3 \cos \left (d x +c \right )+3\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {C \left (\frac {\sqrt {2}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}}{2}-\frac {\sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}}{2}-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \sqrt {\sec \left (d x +c \right )}}\) \(273\)

Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/30/d*a*((15*cos(d*x+c)+15)*2^(1/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/ 
2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+(15*cos(d*x+c)+15) 
*2^(1/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1) 
/(-1/(cos(d*x+c)+1))^(1/2))+(12*cos(d*x+c)^2+36*cos(d*x+c)+72)*sin(d*x+c)* 
A+(20*cos(d*x+c)+100)*sin(d*x+c)*B+60*C*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/ 
2)/(cos(d*x+c)+1)/sec(d*x+c)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 407, normalized size of antiderivative = 2.37 \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\left [\frac {15 \, {\left (C a \cos \left (d x + c\right ) + C a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (3 \, A a \cos \left (d x + c\right )^{3} + {\left (9 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (18 \, A + 25 \, B + 15 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {15 \, {\left (C a \cos \left (d x + c\right ) + C a\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, A a \cos \left (d x + c\right )^{3} + {\left (9 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (18 \, A + 25 \, B + 15 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(5/2),x, algorithm="fricas")
 

Output:

[1/30*(15*(C*a*cos(d*x + c) + C*a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos 
(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x 
+ c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + 
c)^3 + cos(d*x + c)^2)) + 4*(3*A*a*cos(d*x + c)^3 + (9*A + 5*B)*a*cos(d*x 
+ c)^2 + (18*A + 25*B + 15*C)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/co 
s(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d), 1/15*(1 
5*(C*a*cos(d*x + c) + C*a)*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x 
 + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + 
c))*sin(d*x + c))) + 2*(3*A*a*cos(d*x + c)^3 + (9*A + 5*B)*a*cos(d*x + c)^ 
2 + (18*A + 25*B + 15*C)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x 
+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 522 vs. \(2 (148) = 296\).

Time = 0.32 (sec) , antiderivative size = 522, normalized size of antiderivative = 3.03 \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(5/2),x, algorithm="maxima")
 

Output:

1/60*(3*sqrt(2)*(20*a*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 
5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*a*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), 
cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 20*a*cos(5/2*d*x + 5/2*c)*si 
n(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*a*cos(5/2*d 
*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 
 2*a*sin(5/2*d*x + 5/2*c) + 5*a*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos( 
5/2*d*x + 5/2*c))) + 20*a*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d* 
x + 5/2*c))))*A*sqrt(a) + 15*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c) 
^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2) 
*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si 
n(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2* 
d*x + 1/2*c) + 2) + sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x 
 + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2 
*c) + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) 
+ 8*a*sin(1/2*d*x + 1/2*c))*C*sqrt(a) + 20*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) 
 + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*B*sqrt(a))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 311 vs. \(2 (148) = 296\).

Time = 2.00 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.81 \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\frac {15 \, C a^{\frac {5}{2}} \log \left (\frac {{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} + \frac {2 \, {\left ({\left (\sqrt {2} {\left (12 \, A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 20 \, B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 15 \, C a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 10 \, \sqrt {2} {\left (3 \, A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 5 \, B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, C a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, \sqrt {2} {\left (2 \, A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}}}}{15 \, d} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(5/2),x, algorithm="giac")
 

Output:

1/15*(15*C*a^(5/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/ 
2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2* 
d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) - 
6*a))*sgn(cos(d*x + c))/abs(a) + 2*((sqrt(2)*(12*A*a^4*sgn(cos(d*x + c)) + 
 20*B*a^4*sgn(cos(d*x + c)) + 15*C*a^4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/ 
2*c)^2 + 10*sqrt(2)*(3*A*a^4*sgn(cos(d*x + c)) + 5*B*a^4*sgn(cos(d*x + c)) 
 + 3*C*a^4*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 15*sqrt(2)*(2*A*a^ 
4*sgn(cos(d*x + c)) + 2*B*a^4*sgn(cos(d*x + c)) + C*a^4*sgn(cos(d*x + c))) 
)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(5/2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int(((a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int(((a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) c \right ) \] Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2 
),x)
 

Output:

sqrt(a)*a*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**3 
,x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**2,x) 
*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**2,x)*b 
+ int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*b + int( 
(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*c + int(sqrt(s 
ec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*c)