\(\int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [599]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 233 \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^{5/2} (8 A+20 B+19 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^3 (56 A+12 B-27 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}-\frac {a^2 (8 A-12 B-21 C) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{12 d}-\frac {a (4 A-3 C) \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{6 d}+\frac {2 A (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

1/4*a^(5/2)*(8*A+20*B+19*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1 
/2))/d+1/12*a^3*(56*A+12*B-27*C)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d* 
x+c))^(1/2)-1/12*a^2*(8*A-12*B-21*C)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/ 
2)*sin(d*x+c)/d-1/6*a*(4*A-3*C)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*si 
n(d*x+c)/d+2/3*A*(a+a*sec(d*x+c))^(5/2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 6.52 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.79 \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^3 \left (12 (2 A+5 B) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)-57 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+\sqrt {1-\sec (c+d x)} \left (8 A \sin (c+d x)+\left (8 (8 A+3 B)+3 (4 B+11 C) \sec (c+d x)+6 C \sec ^2(c+d x)\right ) \tan (c+d x)\right )\right )}{12 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x] 
^2))/Sec[c + d*x]^(3/2),x]
 

Output:

(a^3*(12*(2*A + 5*B)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^(3/2)*Sin 
[c + d*x] - 57*C*ArcSin[Sqrt[Sec[c + d*x]]]*Sec[c + d*x]^(3/2)*Sin[c + d*x 
] + Sqrt[1 - Sec[c + d*x]]*(8*A*Sin[c + d*x] + (8*(8*A + 3*B) + 3*(4*B + 1 
1*C)*Sec[c + d*x] + 6*C*Sec[c + d*x]^2)*Tan[c + d*x])))/(12*d*Sqrt[-((-1 + 
 Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.52 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.06, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.311, Rules used = {3042, 4574, 27, 3042, 4506, 27, 3042, 4506, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {2 \int \frac {(\sec (c+d x) a+a)^{5/2} (a (5 A+3 B)-a (4 A-3 C) \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\sec (c+d x) a+a)^{5/2} (a (5 A+3 B)-a (4 A-3 C) \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (a (5 A+3 B)-a (4 A-3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\frac {1}{2} \int \frac {(\sec (c+d x) a+a)^{3/2} \left (3 a^2 (8 A+4 B-C)-a^2 (8 A-12 B-21 C) \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x)}}dx-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \int \frac {(\sec (c+d x) a+a)^{3/2} \left (3 a^2 (8 A+4 B-C)-a^2 (8 A-12 B-21 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}}dx-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a^2 (8 A+4 B-C)-a^2 (8 A-12 B-21 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\frac {1}{4} \left (\int \frac {\sqrt {\sec (c+d x) a+a} \left ((56 A+12 B-27 C) a^3+3 (8 A+20 B+19 C) \sec (c+d x) a^3\right )}{2 \sqrt {\sec (c+d x)}}dx-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((56 A+12 B-27 C) a^3+3 (8 A+20 B+19 C) \sec (c+d x) a^3\right )}{\sqrt {\sec (c+d x)}}dx-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((56 A+12 B-27 C) a^3+3 (8 A+20 B+19 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^3\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (3 a^3 (8 A+20 B+19 C) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (3 a^3 (8 A+20 B+19 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\frac {2 a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {6 a^3 (8 A+20 B+19 C) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\frac {6 a^{7/2} (8 A+20 B+19 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^3 (8 A-12 B-21 C) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )-\frac {a^2 (4 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}}{3 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{3 d \sqrt {\sec (c+d x)}}\)

Input:

Int[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/S 
ec[c + d*x]^(3/2),x]
 

Output:

(2*A*(a + a*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + ( 
-1/2*(a^2*(4*A - 3*C)*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*Sin[c 
+ d*x])/d + (-((a^3*(8*A - 12*B - 21*C)*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[ 
c + d*x]]*Sin[c + d*x])/d) + ((6*a^(7/2)*(8*A + 20*B + 19*C)*ArcSinh[(Sqrt 
[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^4*(56*A + 12*B - 27* 
C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/2)/4)/(3 
*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(481\) vs. \(2(201)=402\).

Time = 11.50 (sec) , antiderivative size = 482, normalized size of antiderivative = 2.07

method result size
default \(\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {2}\, A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (24+24 \sec \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (60+60 \sec \left (d x +c \right )\right )+\sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (57+57 \sec \left (d x +c \right )\right )+\sqrt {2}\, A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (24+24 \sec \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (60+60 \sec \left (d x +c \right )\right )+\sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (57+57 \sec \left (d x +c \right )\right )+A \left (32 \sin \left (d x +c \right )+256 \tan \left (d x +c \right )\right )+B \left (96 \tan \left (d x +c \right )+48 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )+\left (132 \cos \left (d x +c \right )+24\right ) C \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}\right )}{48 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(482\)
parts \(-\frac {A \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-4 \sin \left (d x +c \right )-32 \tan \left (d x +c \right )+\sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )+\sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )\right )}{6 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {B \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-8 \sin \left (d x +c \right )-4 \tan \left (d x +c \right )+5 \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+5 \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{4 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\sec \left (d x +c \right )}}+\frac {C \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \left (19 \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+19 \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (11 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )\right )}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(527\)

Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/48/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*(2^(1/ 
2)*A*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/( 
cos(d*x+c)+1))^(1/2))*(24+24*sec(d*x+c))+2^(1/2)*B*(-2/(cos(d*x+c)+1))^(1/ 
2)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(60+60 
*sec(d*x+c))+2^(1/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cot(d*x+c)+c 
sc(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(57+57*sec(d*x+c))+2^(1/2)*A*(-2/( 
cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c) 
+1))^(1/2))*(24+24*sec(d*x+c))+2^(1/2)*B*(-2/(cos(d*x+c)+1))^(1/2)*arctan( 
1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*(60+60*sec(d*x+c 
))+2^(1/2)*C*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)- 
1)/(-1/(cos(d*x+c)+1))^(1/2))*(57+57*sec(d*x+c))+A*(32*sin(d*x+c)+256*tan( 
d*x+c))+B*(96*tan(d*x+c)+48*sec(d*x+c)*tan(d*x+c))+(132*cos(d*x+c)+24)*C*t 
an(d*x+c)*sec(d*x+c)^2)
 

Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 507, normalized size of antiderivative = 2.18 \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {3 \, {\left ({\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (8 \, A a^{2} \cos \left (d x + c\right )^{3} + 8 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (4 \, B + 11 \, C\right )} a^{2} \cos \left (d x + c\right ) + 6 \, C a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{48 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {3 \, {\left ({\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (8 \, A a^{2} \cos \left (d x + c\right )^{3} + 8 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (4 \, B + 11 \, C\right )} a^{2} \cos \left (d x + c\right ) + 6 \, C a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{24 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(3/2),x, algorithm="fricas")
 

Output:

[1/48*(3*((8*A + 20*B + 19*C)*a^2*cos(d*x + c)^2 + (8*A + 20*B + 19*C)*a^2 
*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos 
(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^ 
2)) + 4*(8*A*a^2*cos(d*x + c)^3 + 8*(8*A + 3*B)*a^2*cos(d*x + c)^2 + 3*(4* 
B + 11*C)*a^2*cos(d*x + c) + 6*C*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 
1/24*(3*((8*A + 20*B + 19*C)*a^2*cos(d*x + c)^2 + (8*A + 20*B + 19*C)*a^2* 
cos(d*x + c))*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(- 
a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + 
 c))) + 2*(8*A*a^2*cos(d*x + c)^3 + 8*(8*A + 3*B)*a^2*cos(d*x + c)^2 + 3*( 
4*B + 11*C)*a^2*cos(d*x + c) + 6*C*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
+ c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)) 
]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x 
+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 14913 vs. \(2 (201) = 402\).

Time = 3.19 (sec) , antiderivative size = 14913, normalized size of antiderivative = 64.00 \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(3/2),x, algorithm="maxima")
 

Output:

1/48*(4*sqrt(2)*(30*a^2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
+ 3/2*c)))*sin(3/2*d*x + 3/2*c) - 30*a^2*cos(3/2*d*x + 3/2*c)*sin(2/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 3*sqrt(2)*a^2*log(2*cos 
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*ar 
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*a 
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*ar 
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sqrt(2)*a^2*lo 
g(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin 
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*co 
s(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin 
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 3*sqrt(2) 
*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 
+ 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqr 
t(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt 
(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3* 
sqrt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2* 
c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 
- 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 
 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 
2) + 4*a^2*sin(3/2*d*x + 3/2*c) + 30*a^2*sin(1/3*arctan2(sin(3/2*d*x + ...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 690 vs. \(2 (201) = 402\).

Time = 3.55 (sec) , antiderivative size = 690, normalized size of antiderivative = 2.96 \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c 
)^(3/2),x, algorithm="giac")
 

Output:

1/24*(3*(8*A*a^(5/2)*sgn(cos(d*x + c)) + 20*B*a^(5/2)*sgn(cos(d*x + c)) + 
19*C*a^(5/2)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sq 
rt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(8*A*a^(5/2) 
*sgn(cos(d*x + c)) + 20*B*a^(5/2)*sgn(cos(d*x + c)) + 19*C*a^(5/2)*sgn(cos 
(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1 
/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 16*(9*sqrt(2)*A*a^4*sgn(cos(d*x + 
c)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)) + (7*sqrt(2)*A*a^4*sgn(cos(d*x + c 
)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d* 
x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) + 12*sqrt(2)*(12*(sqrt(a)* 
tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*a^(7/2)*sgn 
(cos(d*x + c)) + 19*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1 
/2*c)^2 + a))^6*C*a^(7/2)*sgn(cos(d*x + c)) - 76*(sqrt(a)*tan(1/2*d*x + 1/ 
2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*a^(9/2)*sgn(cos(d*x + c)) - 
 171*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 
*C*a^(9/2)*sgn(cos(d*x + c)) + 36*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*t 
an(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(11/2)*sgn(cos(d*x + c)) + 89*(sqrt(a)*t 
an(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^(11/2)*sgn 
(cos(d*x + c)) - 4*B*a^(13/2)*sgn(cos(d*x + c)) - 9*C*a^(13/2)*sgn(cos(d*x 
 + c)))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a 
))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 ...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((a + a/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(3/2),x)
 

Output:

int(((a + a/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{5/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) a +2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) b +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) c \right ) \] Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2 
),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x) 
**2,x)*a + 2*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x), 
x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*b + 
 int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x)*c + int( 
sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*b + 2*int(sqrt(s 
ec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*c + int(sqrt(sec(c + d 
*x))*sqrt(sec(c + d*x) + 1),x)*a + 2*int(sqrt(sec(c + d*x))*sqrt(sec(c + d 
*x) + 1),x)*b + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*c)