\(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [606]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 195 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {(8 A-4 B+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 \sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {(4 B-C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {C \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \] Output:

1/4*(8*A-4*B+7*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/ 
2)/d-2^(1/2)*(A-B+C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/ 
2)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+1/4*(4*B-C)*sec(d*x+c)^(3/2)*sin(d*x+ 
c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*C*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d 
*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 1.84 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.41 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left ((4 B-C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )-8 (A-B+C) \arcsin \left (\sqrt {\sec (c+d x)}\right )+4 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )-4 \sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+4 \sqrt {2} C \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )+2 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+4 B \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}-C \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqr 
t[a + a*Sec[c + d*x]],x]
 

Output:

(((4*B - C)*ArcSin[Sqrt[1 - Sec[c + d*x]]] - 8*(A - B + C)*ArcSin[Sqrt[Sec 
[c + d*x]]] + 4*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec 
[c + d*x]]] - 4*Sqrt[2]*B*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec 
[c + d*x]]] + 4*Sqrt[2]*C*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec 
[c + d*x]]] + 2*C*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 4*B*Sqrt[-(( 
-1 + Sec[c + d*x])*Sec[c + d*x])] - C*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d 
*x])])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x]) 
])
 

Rubi [A] (verified)

Time = 1.26 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4576, 27, 3042, 4509, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (a (4 A+3 C)+a (4 B-C) \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (a (4 A+3 C)+a (4 B-C) \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a (4 A+3 C)+a (4 B-C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4509

\(\displaystyle \frac {\frac {\int \frac {\sqrt {\sec (c+d x)} \left ((4 B-C) a^2+(8 A-4 B+7 C) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sqrt {\sec (c+d x)} \left ((4 B-C) a^2+(8 A-4 B+7 C) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left ((4 B-C) a^2+(8 A-4 B+7 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4511

\(\displaystyle \frac {\frac {a (8 A-4 B+7 C) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx-8 a^2 (A-B+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a (8 A-4 B+7 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-8 a^2 (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {\frac {-8 a^2 (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 a (8 A-4 B+7 C) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\frac {\frac {2 a^{3/2} (8 A-4 B+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-8 a^2 (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {\frac {\frac {16 a^2 (A-B+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a^{3/2} (8 A-4 B+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {2 a^{3/2} (8 A-4 B+7 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {8 \sqrt {2} a^{3/2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

Input:

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + 
a*Sec[c + d*x]],x]
 

Output:

(C*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (((2* 
a^(3/2)*(8*A - 4*B + 7*C)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c 
+ d*x]]])/d - (8*Sqrt[2]*a^(3/2)*(A - B + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + 
 d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/(2*a) + (a*(4 
*B - C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4* 
a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4509
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m + n))), 
 x] + Simp[d/(b*(m + n))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 
 1)*Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& GtQ[n, 1]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(529\) vs. \(2(164)=328\).

Time = 8.37 (sec) , antiderivative size = 530, normalized size of antiderivative = 2.72

method result size
default \(-\frac {\left (-8 A \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )^{2}+8 B \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )^{2}-8 C \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )^{2}+8 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-4 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+7 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+8 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-4 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+7 C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}-4 B \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )-2\right ) \sqrt {2}\, C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}}}{8 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(530\)
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \cos \left (d x +c \right )^{2} \left (-\arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}+\arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}-\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {5}{2}} \left (-2 \sqrt {2}\, \cos \left (d x +c \right )^{3} \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )^{3} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\cos \left (d x +c \right )^{3} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{2 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {7}{2}} \left (-8 \sqrt {2}\, \cos \left (d x +c \right )^{4} \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+7 \cos \left (d x +c \right )^{4} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+7 \cos \left (d x +c \right )^{4} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )+2\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}\right )}{8 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(618\)

Input:

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

-1/8/d/a*(-8*A*arctan(1/2*2^(1/2)*(csc(d*x+c)-cot(d*x+c))/(-1/(cos(d*x+c)+ 
1))^(1/2))*2^(1/2)*cos(d*x+c)^2+8*B*arctan(1/2*2^(1/2)*(csc(d*x+c)-cot(d*x 
+c))/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)*cos(d*x+c)^2-8*C*arctan(1/2*2^(1/2 
)*(csc(d*x+c)-cot(d*x+c))/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)*cos(d*x+c)^2+ 
8*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d 
*x+c)^2-4*B*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2 
))*cos(d*x+c)^2+7*C*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1/(cos(d*x+c)+ 
1))^(1/2))*cos(d*x+c)^2+8*A*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/(-1/(cos 
(d*x+c)+1))^(1/2))*cos(d*x+c)^2-4*B*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)+1)/ 
(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+7*C*arctan(1/2*(-cot(d*x+c)+csc(d* 
x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-4*B*2^(1/2)*(-2/(cos(d*x+c 
)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)+sin(d*x+c)*(cos(d*x+c)-2)*2^(1/2)*C*(-2/ 
(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(3/2)/(cos(d*x+ 
c)+1)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 630, normalized size of antiderivative = 3.23 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="fricas")
 

Output:

[1/16*(((8*A - 4*B + 7*C)*cos(d*x + c)^2 + (8*A - 4*B + 7*C)*cos(d*x + c)) 
*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 
2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 8*sqrt(2 
)*((A - B + C)*a*cos(d*x + c)^2 + (A - B + C)*a*cos(d*x + c))*log(-(cos(d* 
x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x 
+ c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d 
*x + c) + 1))/sqrt(a) + 4*((4*B - C)*cos(d*x + c) + 2*C)*sqrt((a*cos(d*x + 
 c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^ 
2 + a*d*cos(d*x + c)), 1/8*(8*sqrt(2)*((A - B + C)*a*cos(d*x + c)^2 + (A - 
 B + C)*a*cos(d*x + c))*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a 
)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + ((8*A - 4*B 
+ 7*C)*cos(d*x + c)^2 + (8*A - 4*B + 7*C)*cos(d*x + c))*sqrt(-a)*arctan(1/ 
2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos 
(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*((4*B - C)*cos(d*x + c 
) + 2*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x 
 + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c))**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2998 vs. \(2 (164) = 328\).

Time = 0.43 (sec) , antiderivative size = 2998, normalized size of antiderivative = 15.37 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="maxima")
 

Output:

-1/16*(8*(sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin 
(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + 
c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d* 
x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*ar 
ctan2(sin(d*x + c), cos(d*x + c))) + 1) - log(2*cos(1/2*arctan2(sin(d*x + 
c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 
2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2 
*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x 
 + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 
 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin( 
1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - log(2*cos(1/2*arctan2(sin( 
d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)) 
)^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*s 
in(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + log(2*cos(1/2*arctan2(s 
in(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + 
c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2 
)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2))*A/sqrt(a) + 4*(4*sqrt 
(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt 
(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) + (cos(2 
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 543 vs. \(2 (164) = 328\).

Time = 2.27 (sec) , antiderivative size = 543, normalized size of antiderivative = 2.78 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="giac")
 

Output:

1/8*(4*sqrt(2)*(A*sqrt(a) - B*sqrt(a) + C*sqrt(a))*log((sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a + (8*A - 4*B + 7*C)* 
log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) 
)^2 - a*(2*sqrt(2) + 3)))/sqrt(a) - (8*A - 4*B + 7*C)*log(abs((sqrt(a)*tan 
(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 
 3)))/sqrt(a) + 4*sqrt(2)*(12*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1 
/2*d*x + 1/2*c)^2 + a))^6*B*sqrt(a) - 17*(sqrt(a)*tan(1/2*d*x + 1/2*c) - s 
qrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*sqrt(a) - 76*(sqrt(a)*tan(1/2*d*x + 
 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*a^(3/2) + 57*(sqrt(a)*ta 
n(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*a^(3/2) + 36* 
(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^ 
(5/2) - 19*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + 
 a))^2*C*a^(5/2) - 4*B*a^(7/2) + 3*C*a^(7/2))/((sqrt(a)*tan(1/2*d*x + 1/2* 
c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2* 
c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/(d*sgn(cos(d*x + c) 
))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(((1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x))^(1/2),x)
 

Output:

int(((1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}}{\sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) a \right )}{a} \] Input:

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3)/ 
(sec(c + d*x) + 1),x)*c + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*s 
ec(c + d*x)**2)/(sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x))*sqrt(sec 
(c + d*x) + 1)*sec(c + d*x))/(sec(c + d*x) + 1),x)*a))/a