\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [610]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 191 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (13 A-5 B+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}} \] Output:

-2^(1/2)*(A-B+C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/( 
a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+2/5*A*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a* 
sec(d*x+c))^(1/2)-2/15*(A-5*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+ 
c))^(1/2)+2/15*(13*A-5*B+15*C)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+ 
c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.59 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.72 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {(29 A-10 B+30 C-2 (A-5 B) \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {\sec (c+d x)} \sin (c+d x)+\frac {15 \sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)}{\sqrt {1-\sec (c+d x)}}}{15 d \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(5/2)*Sqrt 
[a + a*Sec[c + d*x]]),x]
 

Output:

((29*A - 10*B + 30*C - 2*(A - 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sq 
rt[Sec[c + d*x]]*Sin[c + d*x] + (15*Sqrt[2]*(A - B + C)*ArcTan[(Sqrt[2]*Sq 
rt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x])/Sqrt[1 - Sec[c + d 
*x]])/(15*d*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.09, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.244, Rules used = {3042, 4574, 27, 3042, 4510, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {2 \int -\frac {a (A-5 B)-a (4 A+5 C) \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx}{5 a}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-5 B)-a (4 A+5 C) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-5 B)-a (4 A+5 C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}\)

\(\Big \downarrow \) 4510

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 \int -\frac {a^2 (13 A-5 B+15 C)-2 a^2 (A-5 B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}}{5 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a^2 (13 A-5 B+15 C)-2 a^2 (A-5 B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a^2 (13 A-5 B+15 C)-2 a^2 (A-5 B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a^2 (13 A-5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 (A-B+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a^2 (13 A-5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 (A-B+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {30 a^2 (A-B+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a^2 (13 A-5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-5 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a^2 (13 A-5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {15 \sqrt {2} a^{3/2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}}{5 a}\)

Input:

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(5/2)*Sqrt[a + a 
*Sec[c + d*x]]),x]
 

Output:

(2*A*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) - ((2 
*a*(A - 5*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x] 
]) - ((-15*Sqrt[2]*a^(3/2)*(A - B + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]] 
*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + (2*a^2*(13*A - 5*B 
 + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3 
*a))/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
Maple [A] (verified)

Time = 2.11 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.46

method result size
default \(\frac {\left (\left (15 \cos \left (d x +c \right )+15\right ) A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (-15 \cos \left (d x +c \right )-15\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, B \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (15 \cos \left (d x +c \right )+15\right ) C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (6 \cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )+26\right ) \sin \left (d x +c \right ) A +\left (10 \cos \left (d x +c \right )-10\right ) \sin \left (d x +c \right ) B +30 C \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{15 d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {\sec \left (d x +c \right )}}\) \(278\)
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (6 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )+26 \sec \left (d x +c \right ) \tan \left (d x +c \right )+\arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (15 \sec \left (d x +c \right )+15 \sec \left (d x +c \right )^{2}\right )\right )}{15 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-2 \tan \left (d x +c \right )+2 \sin \left (d x +c \right )+\arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (-3-3 \sec \left (d x +c \right )\right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {C \left (\arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d a \sqrt {\sec \left (d x +c \right )}}\) \(352\)

Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/15/d/a*((15*cos(d*x+c)+15)*A*(-2/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2 
)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))+(-15*cos(d*x+c)-15)* 
(-2/(cos(d*x+c)+1))^(1/2)*B*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*( 
-csc(d*x+c)+cot(d*x+c)))+(15*cos(d*x+c)+15)*C*(-2/(cos(d*x+c)+1))^(1/2)*ar 
ctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-csc(d*x+c)+cot(d*x+c)))+(6*co 
s(d*x+c)^2-2*cos(d*x+c)+26)*sin(d*x+c)*A+(10*cos(d*x+c)-10)*sin(d*x+c)*B+3 
0*C*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 398, normalized size of antiderivative = 2.08 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + \frac {4 \, {\left (3 \, A \cos \left (d x + c\right )^{3} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (13 \, A - 5 \, B + 15 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{3} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (13 \, A - 5 \, B + 15 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="fricas")
 

Output:

[1/30*(15*sqrt(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*log(-(cos(d 
*x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x 
 + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos( 
d*x + c) + 1))/sqrt(a) + 4*(3*A*cos(d*x + c)^3 - (A - 5*B)*cos(d*x + c)^2 
+ (13*A - 5*B + 15*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d), 1/15*(15*sqrt 
(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*sqrt(-1/a)*arctan(sqrt(2) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin 
(d*x + c)) + 2*(3*A*cos(d*x + c)^3 - (A - 5*B)*cos(d*x + c)^2 + (13*A - 5* 
B + 15*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(5/2)/(a+a*sec(d*x+ 
c))**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 742 vs. \(2 (162) = 324\).

Time = 0.37 (sec) , antiderivative size = 742, normalized size of antiderivative = 3.88 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="maxima")
 

Output:

1/60*(sqrt(2)*(60*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2* 
c)))*sin(5/2*d*x + 5/2*c) - 5*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/ 
2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 60*cos(5/2*d*x + 5/2*c)*sin(4/5*ar 
ctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 5*cos(5/2*d*x + 5/2*c 
)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 30*log(co 
s(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arc 
tan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + 2*sin(1/5*arctan2(si 
n(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 1) + 30*log(cos(1/5*arctan2(s 
in(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arctan2(sin(5/2*d* 
x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 - 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2 
*c), cos(5/2*d*x + 5/2*c))) + 1) + 6*sin(5/2*d*x + 5/2*c) - 5*sin(3/5*arct 
an2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 60*sin(1/5*arctan2(sin( 
5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A/sqrt(a) - 10*(3*sqrt(2)*cos(2/ 
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c 
) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), c 
os(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c) 
, cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2 
*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/ 
2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x ...
 

Giac [A] (verification not implemented)

Time = 1.85 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.04 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\frac {15 \, {\left (\sqrt {2} A - \sqrt {2} B + \sqrt {2} C\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} + \frac {2 \, {\left (15 \, \sqrt {2} A a^{2} + 15 \, \sqrt {2} C a^{2} + {\left (20 \, \sqrt {2} A a^{2} - 10 \, \sqrt {2} B a^{2} + 30 \, \sqrt {2} C a^{2} + {\left (17 \, \sqrt {2} A a^{2} - 10 \, \sqrt {2} B a^{2} + 15 \, \sqrt {2} C a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}}}}{15 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^(1/2),x, algorithm="giac")
 

Output:

1/15*(15*(sqrt(2)*A - sqrt(2)*B + sqrt(2)*C)*log(abs(-sqrt(a)*tan(1/2*d*x 
+ 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a) + 2*(15*sqrt(2)*A* 
a^2 + 15*sqrt(2)*C*a^2 + (20*sqrt(2)*A*a^2 - 10*sqrt(2)*B*a^2 + 30*sqrt(2) 
*C*a^2 + (17*sqrt(2)*A*a^2 - 10*sqrt(2)*B*a^2 + 15*sqrt(2)*C*a^2)*tan(1/2* 
d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d* 
x + 1/2*c)^2 + a)^(5/2))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1 
/cos(c + d*x))^(5/2)),x)
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1 
/cos(c + d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{4}+\sec \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x \right ) c \right )}{a} \] Input:

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**4 
 + sec(c + d*x)**3),x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)) 
/(sec(c + d*x)**3 + sec(c + d*x)**2),x)*b + int((sqrt(sec(c + d*x))*sqrt(s 
ec(c + d*x) + 1))/(sec(c + d*x)**2 + sec(c + d*x)),x)*c))/a