\(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\) [678]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 95 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {a C \text {arctanh}(\sin (c+d x))}{b^2 d}+\frac {2 \left (A b^2+a^2 C\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {C \tan (c+d x)}{b d} \] Output:

-a*C*arctanh(sin(d*x+c))/b^2/d+2*(A*b^2+C*a^2)*arctanh((a-b)^(1/2)*tan(1/2 
*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(1/2)/b^2/(a+b)^(1/2)/d+C*tan(d*x+c)/b/d
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.13 (sec) , antiderivative size = 331, normalized size of antiderivative = 3.48 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\frac {2 \cos (c+d x) (b+a \cos (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \left (a C \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-a C \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {2 i \left (A b^2+a^2 C\right ) \arctan \left (\frac {(i \cos (c)+\sin (c)) \left (a \sin (c)+(-b+a \cos (c)) \tan \left (\frac {d x}{2}\right )\right )}{\sqrt {a^2-b^2} \sqrt {(\cos (c)-i \sin (c))^2}}\right ) (\cos (c)-i \sin (c))}{\sqrt {a^2-b^2} \sqrt {(\cos (c)-i \sin (c))^2}}+\frac {b C \sin \left (\frac {d x}{2}\right )}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {b C \sin \left (\frac {d x}{2}\right )}{\left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )}{b^2 d (A+2 C+A \cos (2 (c+d x))) (a+b \sec (c+d x))} \] Input:

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]
 

Output:

(2*Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + C*Sec[c + d*x]^2)*(a*C*Log[Cos[( 
c + d*x)/2] - Sin[(c + d*x)/2]] - a*C*Log[Cos[(c + d*x)/2] + Sin[(c + d*x) 
/2]] - ((2*I)*(A*b^2 + a^2*C)*ArcTan[((I*Cos[c] + Sin[c])*(a*Sin[c] + (-b 
+ a*Cos[c])*Tan[(d*x)/2]))/(Sqrt[a^2 - b^2]*Sqrt[(Cos[c] - I*Sin[c])^2])]* 
(Cos[c] - I*Sin[c]))/(Sqrt[a^2 - b^2]*Sqrt[(Cos[c] - I*Sin[c])^2]) + (b*C* 
Sin[(d*x)/2])/((Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]) 
) + (b*C*Sin[(d*x)/2])/((Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + 
 d*x)/2]))))/(b^2*d*(A + 2*C + A*Cos[2*(c + d*x)])*(a + b*Sec[c + d*x]))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 4571, 3042, 4486, 3042, 4257, 4318, 3042, 3138, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4571

\(\displaystyle \frac {\int \frac {\sec (c+d x) (A b-a C \sec (c+d x))}{a+b \sec (c+d x)}dx}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (A b-a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 4486

\(\displaystyle \frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)}dx}{b}-\frac {a C \int \sec (c+d x)dx}{b}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {a C \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{b}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {a C \text {arctanh}(\sin (c+d x))}{b d}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 4318

\(\displaystyle \frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {1}{\frac {a \cos (c+d x)}{b}+1}dx}{b^2}-\frac {a C \text {arctanh}(\sin (c+d x))}{b d}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {1}{\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{b}+1}dx}{b^2}-\frac {a C \text {arctanh}(\sin (c+d x))}{b d}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {2 \left (a^2 C+A b^2\right ) \int \frac {1}{\left (1-\frac {a}{b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right )+\frac {a+b}{b}}d\tan \left (\frac {1}{2} (c+d x)\right )}{b^2 d}-\frac {a C \text {arctanh}(\sin (c+d x))}{b d}}{b}+\frac {C \tan (c+d x)}{b d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {2 \left (a^2 C+A b^2\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}-\frac {a C \text {arctanh}(\sin (c+d x))}{b d}}{b}+\frac {C \tan (c+d x)}{b d}\)

Input:

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]
 

Output:

(-((a*C*ArcTanh[Sin[c + d*x]])/(b*d)) + (2*(A*b^2 + a^2*C)*ArcTanh[(Sqrt[a 
 - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b*Sqrt[a + b]*d))/b + ( 
C*Tan[c + d*x])/(b*d)
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4318
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[1/b   Int[1/(1 + (a/b)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, 
f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4486
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[( 
e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[B/b   Int[Csc[e + f*x], 
 x], x] + Simp[(A*b - a*B)/b   Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x 
] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]
 

rule 4571
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[ 
(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x] 
*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   In 
t[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) - a*C* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.44

method result size
derivativedivides \(\frac {-\frac {C}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}-\frac {2 \left (-A \,b^{2}-C \,a^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{b^{2} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {C}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(137\)
default \(\frac {-\frac {C}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}-\frac {2 \left (-A \,b^{2}-C \,a^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{b^{2} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {C}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(137\)
risch \(\frac {2 i C}{d b \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C \,a^{2}}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C \,a^{2}}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{b^{2} d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{b^{2} d}\) \(360\)

Input:

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE 
)
 

Output:

1/d*(-C/b/(tan(1/2*d*x+1/2*c)+1)-C*a/b^2*ln(tan(1/2*d*x+1/2*c)+1)-2/b^2*(- 
A*b^2-C*a^2)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*( 
a-b))^(1/2))-C/b/(tan(1/2*d*x+1/2*c)-1)+C*a/b^2*ln(tan(1/2*d*x+1/2*c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 184 vs. \(2 (86) = 172\).

Time = 0.41 (sec) , antiderivative size = 424, normalized size of antiderivative = 4.46 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\left [\frac {{\left (C a^{2} + A b^{2}\right )} \sqrt {a^{2} - b^{2}} \cos \left (d x + c\right ) \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - {\left (C a^{3} - C a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (C a^{3} - C a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}, \frac {2 \, {\left (C a^{2} + A b^{2}\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - {\left (C a^{3} - C a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (C a^{3} - C a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}\right ] \] Input:

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="fri 
cas")
 

Output:

[1/2*((C*a^2 + A*b^2)*sqrt(a^2 - b^2)*cos(d*x + c)*log((2*a*b*cos(d*x + c) 
 - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*s 
in(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2) 
) - (C*a^3 - C*a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (C*a^3 - C*a*b^ 
2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(C*a^2*b - C*b^3)*sin(d*x + c)) 
/((a^2*b^2 - b^4)*d*cos(d*x + c)), 1/2*(2*(C*a^2 + A*b^2)*sqrt(-a^2 + b^2) 
*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) 
*cos(d*x + c) - (C*a^3 - C*a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (C* 
a^3 - C*a*b^2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(C*a^2*b - C*b^3)*s 
in(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \] Input:

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c)),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="max 
ima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.72 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=-\frac {\frac {C a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} - \frac {C a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} + \frac {2 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} b} + \frac {2 \, {\left (C a^{2} + A b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{\sqrt {-a^{2} + b^{2}} b^{2}}}{d} \] Input:

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="gia 
c")
 

Output:

-(C*a*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 - C*a*log(abs(tan(1/2*d*x + 1 
/2*c) - 1))/b^2 + 2*C*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*b 
) + 2*(C*a^2 + A*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + a 
rctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2))) 
/(sqrt(-a^2 + b^2)*b^2))/d
 

Mupad [B] (verification not implemented)

Time = 14.17 (sec) , antiderivative size = 934, normalized size of antiderivative = 9.83 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx =\text {Too large to display} \] Input:

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))),x)
                                                                                    
                                                                                    
 

Output:

- (2*C*a*atanh((64*C^3*a^3*tan(c/2 + (d*x)/2))/(64*C^3*a^3 + 128*A*C^2*a^3 
 - (64*C^3*a^4)/b + 64*A^2*C*a*b^2 - 64*A^2*C*a^2*b - (128*A*C^2*a^4)/b) + 
 (64*C^3*a^4*tan(c/2 + (d*x)/2))/(64*C^3*a^4 + 128*A*C^2*a^4 - 64*C^3*a^3* 
b - 128*A*C^2*a^3*b - 64*A^2*C*a*b^3 + 64*A^2*C*a^2*b^2) + (128*A*C^2*a^4* 
tan(c/2 + (d*x)/2))/(64*C^3*a^4 + 128*A*C^2*a^4 - 64*C^3*a^3*b - 128*A*C^2 
*a^3*b - 64*A^2*C*a*b^3 + 64*A^2*C*a^2*b^2) + (64*A^2*C*a^2*tan(c/2 + (d*x 
)/2))/(64*A^2*C*a^2 - (64*C^3*a^3)/b + (64*C^3*a^4)/b^2 - 64*A^2*C*a*b - ( 
128*A*C^2*a^3)/b + (128*A*C^2*a^4)/b^2) + (128*A*C^2*a^3*tan(c/2 + (d*x)/2 
))/(64*C^3*a^3 + 128*A*C^2*a^3 - (64*C^3*a^4)/b + 64*A^2*C*a*b^2 - 64*A^2* 
C*a^2*b - (128*A*C^2*a^4)/b) - (64*A^2*C*a*b*tan(c/2 + (d*x)/2))/(64*A^2*C 
*a^2 - (64*C^3*a^3)/b + (64*C^3*a^4)/b^2 - 64*A^2*C*a*b - (128*A*C^2*a^3)/ 
b + (128*A*C^2*a^4)/b^2)))/(b^2*d) - (log(b*tan(c/2 + (d*x)/2) - a*tan(c/2 
 + (d*x)/2) + (a^2 - b^2)^(1/2))*(A*b^2*(a^2 - b^2)^(1/2) + C*a^2*(a^2 - b 
^2)^(1/2)))/(b^2*d*(a^2 - b^2)) - (log((((a + b)*(a - b))^(1/2)*(A*b^2 + C 
*a^2)*((32*tan(c/2 + (d*x)/2)*(a - b)*(A^2*b^4 + 2*C^2*a^4 - 2*C^2*a^3*b + 
 C^2*a^2*b^2 + 2*A*C*a^2*b^2))/b^2 + (32*((a + b)*(a - b))^(1/2)*(A*b^2 + 
C*a^2)*(a - b)*(A*a^2*b^2 - A*b^4 + C*a*b^3 - C*a^3*b + 2*C*a^3*tan(c/2 + 
(d*x)/2)*(a^2 - b^2)^(1/2) + 2*A*a*b^2*tan(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2 
)))/((b^4 - a^2*b^2)*(a + b))))/(b^4 - a^2*b^2) + (32*C*a*(a - b)*(A^2*b^3 
 + C^2*a^3 + A*C*a*b^2 + A*C*a^2*b))/b^3)*((a + b)*(a - b))^(1/2)*(A*b^...
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 267, normalized size of antiderivative = 2.81 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx=\frac {2 \sqrt {-a^{2}+b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {-a^{2}+b^{2}}}\right ) \cos \left (d x +c \right ) a^{2} c +2 \sqrt {-a^{2}+b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {-a^{2}+b^{2}}}\right ) \cos \left (d x +c \right ) a \,b^{2}+\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a^{3} c -\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a \,b^{2} c -\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a^{3} c +\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a \,b^{2} c +\sin \left (d x +c \right ) a^{2} b c -\sin \left (d x +c \right ) b^{3} c}{\cos \left (d x +c \right ) b^{2} d \left (a^{2}-b^{2}\right )} \] Input:

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x)
 

Output:

(2*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqr 
t( - a**2 + b**2))*cos(c + d*x)*a**2*c + 2*sqrt( - a**2 + b**2)*atan((tan( 
(c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*cos(c + d*x)*a* 
b**2 + cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**3*c - cos(c + d*x)*log(ta 
n((c + d*x)/2) - 1)*a*b**2*c - cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**3 
*c + cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a*b**2*c + sin(c + d*x)*a**2*b 
*c - sin(c + d*x)*b**3*c)/(cos(c + d*x)*b**2*d*(a**2 - b**2))